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ABSTRACT OF THE DISSERTATION

Quantitative Decision-making in Software Engineering

by

Pamela Bhattacharya

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2012

Professor Iulian Neamtiu, Chairperson

Our thesis is that software repositories contain latent information that can be

mined to enable quantitative decision making. The decision-making process in software de-

velopment and maintenance is mostly dependent on software practitioner’s experience and

intuition. For example, developers use their experiences when prioritizing bug fixes, man-

agers allocate development and testing resources based on their intuition and so on. Often

these human driven decisions lead to wasted resources and increased cost of building and

maintaining large complex software systems. The fundamental problem that motivates this

dissertation is the lack of techniques that can automate decision-making process in software

engineering. As data mining techniques became more mature, mining software reposito-

ries has emerged as a novel methodology to analyze the massive amounts of data created

during software development process. Significant, repeatable patterns and behaviours in

software development can be identified as a result of this mining which are often used for

predicting various aspects of software development and maintenance, such as predicting

defect-prone releases, software quality, or bug fix time. In this dissertation we show tech-
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niques to effectively mine software repositories, identify significant patterns during software

development and maintenance, and recommend actionable aspects that can automate the

decision-making process in software engineering. We demonstrate efficient techniques to

use the information stored in software repositories and produce results to guide software

practitioners so that they can depend less on their intuition and experience and more on

actual data.

To this end, in this dissertation, we make several contributions. First, we perform

several empirical studies to characterize information needs of software developers and man-

agers in the context of decision making during software development and maintenance. For

example, we study what kinds of decision-making problems are important to software prac-

titioners on a daily basis. Second, to facilitate analysis of various types of decision-making

problems using a common platform, we design a generic mixed-graph model to capture

associations of different software elements. We illustrate how we can build different types

of hyper-edges on this mixed-graph to quantify amorphous behaviour and dependencies

among various software elements. Third, to demonstrate the effectiveness of our frame-

work, we formalize a set of four important decision-making problems that are challenging

to address with the state-of-the-art. We show that our framework can achieve high-levels of

prediction accuracies for different types of decision-making problems when tested on large,

widely-used, real-world, long-lived software projects.
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Chapter 1

Introduction

1.1 Motivation

Software systems are continuously changing and adapting to meet the needs of

their users and therefore software development has high associated costs and effort. A sur-

vey by the National Institute of Standards and Technology estimated that the annual cost

of software bugs is about $59.5 billion [125]. Some software maintenance studies indicate

that maintenance costs are at least 50%, and sometimes more than 90%, of the total costs

associated with a software product [87, 146], while other estimates place maintenance costs

at several times the cost of the initial software version [151]. These surveys suggest that

taking the right decision to change any software artifact would be beneficial in reducing the

high-costs associated with the software development and maintenance process. Decision-

making and strategic-planning are two key attributes in software engineering; everyday

software practitioners have to deal with several important decisions. For example, which
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parts of the code must be refactored, which parts of the code should be tested with high

priority, which parts of the code have high change-risks, which bugs should be prioritized,

who can fix a bug, which feature requests should be addressed in the upcoming release, how

can developers–testers collaborate more effectively, etc. Human-driven decision-making is a

cognitive phenomenon which at an abstract level involves four primary sub-processes [79]:

identifying probable solutions to the same problem, analyzing the pros and cons of each of

them, prioritizing them based on their effects, and then choosing the solution which intu-

itively seems to be the best. To ensure that the right decision is being taken, managers

need to go through a long, tedious process; they need to manually analyze probable options,

always be up-to-date with pertinent information, carefully make long-term and short-term

plans and then use their expertise and instincts to make a decision. However, ensuring

correctness of these plethora of decisions becomes extremely challenging and error-prone

as the size of the software grows both in code size as well as the number of contributors

(developers, testers, and managers) working collaboratively. This process is further com-

plicated by the pressure of delivering products that will accommodate the end-user’s needs

and increase the wide-spread use of the software. These manually taken decisions therefore

often lead to wasted resources and increased cost of building and maintaining large complex

software systems [53, 110, 72].

Examples. We provide several examples of regularly encountered decision-making prob-

lems and why manually-taking decisions for these problems is hard and error-prone.

1. When a bug report is submitted by an user, the status of the bug is Unconfirmed by

default. After the module owner or the triager of the module the bug has been reported
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in can confirm that the bug report is valid, the status of the bug is changed to New.

After a bug is changed to status New, the triager needs to first assign severity and

priority to the bug before the bug can be assigned to developers. Assigning severity-

priority to bugs manually is a non-trivial task as severity is measured by how badly the

software crashes due to the bug while priority measures how important it is to spend

the effort in fixing the bug. As of May 2012, the Firefox bug repository contains 14,992

unconfirmed and new bugs. Validating the unconfirmed bugs, assigning severities-

priorities manually is a time-consuming and error-prone manual task.

2. After a bug has been confirmed as a valid bug, the bug triager needs to assign manually

the bug to a developer who can potentially fix the bug. An empirical study by Jeong et

al [76] reports that, on average, the Eclipse project takes about 40 days to assign a bug

to the first developer, and then it takes an additional 100 days or more to reassign

the bug to the second developer. Similarly, in the Mozilla project, on average, it

takes 180 days for the first assignment and then an additional 250 days if the first

assigned developer is unable to fix it. These numbers indicate that the lack of effective,

automatic assignment and toss reduction techniques results in considerably high effort

associated with bug resolution.

3. Open source projects critically depend on external contributions and volunteers who

support the community in various ways in addition to fixing bugs and adding code.

Lack of automatic tools to manage the source-code and bug-repositories often leads

to frustrations among these volunteers. For example, after an individual submits

a patch which has passed the review, he/she needs to obtain commit access to the

3



www.manaraa.com

repository. This commit access application is manual and requires a voting system

where multiple senior project-leaders need to unanimously grant access. 1 These

applications often take months to grant access leading to committer frustration (e.g.,

Mozilla bug 609552). 2 Also, inefficient triaging techniques can lead to frustration to

the extent where contributors leave the project. 3

The above examples show that as software grows and the development-maintenance

process becomes substantially complex, it is necessary to develop automated techniques

that can assist several classes of software practitioners (developers, testers and managers)

with routine decision-making problems (similar to those instantiated earlier) and help them

compare and contrast between multiple probable solutions. Prior works in mining software

repositories have concentrated on understanding how software systems evolve [161, 64, 171],

how can significant repeatable patterns during software development be used for efficient

software quality predictors [175, 144, 122] and how a social network of developers contribute

towards community growth in software development [23, 21]. However, none of these stud-

ies integrate all the three aspects of software development (i.e., system evolution, quality

prediction, and social interactions) together to help automate decision-making in software

engineering.

This dissertation builds the missing bridge across these multiple facets of mining

software repository. We identify various types of decision making problems in software en-

gineering, explain why automating resolutions to these human-driven decisions are hard, or
1Mozilla commit access policies: http://www.mozilla.org/hacking/commit-access-policy/
2https://bugzilla.mozilla.org/show_bug.cgi?id=609552)
3http://tylerdowner.wordpress.com/2011/08/27/some-clarification-and-musings/
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error-prone, and design efficient data-driven recommendation frameworks that can facilitate

the conventional decision-making process in software engineering. We employ large-sized

and widely-used open source projects for conducting empirical studies to identify common

decision-making problems as well as to validate our techniques. The lack of organized data

in open source software further complicates the problem of finding automatic resolutions to

human-driven decision making in these projects.

1.2 Challenges

To enable efficient mining and ensuring the results of our empirical studies repre-

sent real-world scenarios, gathering clean and structured data from several large, long-lived

software repositories was the first challenge we faced during the course of this work. The

lack of standard benchmarks to validate the effectiveness of data-driven recommendation

or predictions models in empirical software engineering further complicates the problem of

constructing data sets that are context-sensitive and of statistically significant size. In this

section, we enumerate the additional challenges in mining software repositories to automate

decision making.

• Characterizing information needs of software practitioners

The first challenge is to identify a set of routine decisions taken during software

development process which are prone to error if taken manually and can be improved

using field-data.

• Amorphous nature of software repositories
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The second challenge in drawing meaningful results by mining large software reposi-

tories is the incomplete nature and unstructured format of the information contained

in these repositories.

We provide several examples that will help in understanding the problems associated

with amorphous nature of the software repositories:

– Software design specifications: open source projects rarely have software design

descriptions that record all the design specifications for major releases. Release

notes typically contain an itemized set of features and enhancements available

with that release and set of blocker bugs from previous release that have been

fixed. Unavailability of these specifications makes it difficult to reason about the

evolution of the software project.

– Classifying source code changes: source code change logs rarely contain meta

data that can help infer if the change was due to a feature enhancement or a bug

fix.

– Major architectural changes: code analysis for a project might suggest that signif-

icant portions of the source code were rewritten for a specific version. Reasons

behind even such major development decisions are never documented in open

source projects. For example, Apache Lucene is an information retrieval soft-

ware library and while mining the release logs we found that version 3.0 of the

software was rewritten in Java 5 while all versions for 1.x and 2.x are written

entirely in Java 1.4. Detecting factors that affected the decision of rewriting ma-
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jor parts of the source code is an useful piece of information that can influence

future decisions. Next generation of project managers might ask, “why was this

change made at all?,” “what features of Java 5 influenced this major change?,” or

“did this change result in improved user-experience?,” or “did this major change

introduce more bugs in the code?”

The scenarios presented above demonstrate the need for analyzing software changes.

Attaching meaningful information to these various facets of the evolution process by

extracting data from these large repositories is therefore the first challenge.

• Integrating multiple repositories of the same software project

Prior works in mining software repositories have looked at one repository from a soft-

ware project at a time and tried to deduce significant patterns in software development

and evolution. However, we observed that multiple repositories of a same software

project are deeply interconnected. For example, it is often required to merge commit

messages from source code repositories and log messages from bug databases to track

all changes made to the code to fix a bug. However, it is not always possible to in-

fer these information from the log message or the commit message alone. Therefore,

the third challenge is to combine amorphous meaningful information from multiple

repositories of the same project and model heterogeneous relationships among them.

• Building frameworks to automate decision-making process in software engineering

With information about various relationships within software artifacts and other rel-

evant empirical analyses in hand, the over-arching goal of this dissertation is to build
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automated frameworks to assist software practitioners in decision making. The fourth

challenge is therefore to build scalable, self-evolving, efficient and automated rec-

ommendation systems with minimum false positives that can help compare–contrast

multiple resolutions to a given decision-making problem. We then plan to validate

our frameworks on statistically significant data sets and show how our methods out-

perform manual approaches.

1.3 Dissertation Overview

The overarching goal of this dissertation is to effectively mine software repositories

to identify significant patterns during software development and maintenance, and produce

information that can automate decision-making process in software engineering. We show

how using the information stored in software repositories we can help generate recommen-

dations to guide software practitioners so that they can depend less on their intuition and

experience and more on historical and field data. This dissertation is guided by the following

thesis:

Software repositories contain latent information that can be mined to enable quantitative

decision making.

Using this principle as the cornerstone, this dissertation makes three major contri-

butions. First, we design a generic data-driven framework for both generating recommen-

dations in the context of decision-making problems and for searching software repositories

effectively. Second, we identify and formalize four novel decision-making problems that can
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benefit from the data-driven recommendation system we design. Then, we show the effec-

tiveness of our recommendations by evaluating our techniques on large, real-world data sets.

Third, we show how the inherent search-based property of our framework can be further

improved when using a Prolog-based query-management system.

1.3.1 Overview of the Underlying Framework

Software repositories, namely source code and bug repositories contain a wealth

of data. The central idea of this dissertation is to use these data in facilitating various

decision-making process in software engineering. However, before this data can be used for

forming recommendation engines, it needs to be collected, cleaned and eventually structured

in a format that can be used in designing our recommendation and search frameworks. We

first illustrate how and what raw data we collect and what other information we extract

from this raw data. Next, we describe several metrics we design and networks we build

to characterize relationships between several entities. Then, we show how these metrics–

dependencies can be utilized to form both recommendation-based and search-based query

framework to benefit quantitative decision-making in software engineering.

1.3.2 Recommendations to Facilitate Decision-making

To show the effectiveness of our generic data-driven framework in providing recom-

mendations, we apply our framework to four novel decision-making problems. We show an

overview of this process in Figure 1.1. The repositories already contain the entire data and

relationships between several entities. For each of the problems, we first extract problem-
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Figure 1.1: Overview of the underlying generic framework.

specific data. Next, we perform several empirical studies to understand what factors affect

the problem, what attributes can be used to model the problem and then we design effective

metrics to provide recommendations.

Sample Decisions

Empowered by several empirical studies, we identified the following four routine

problems in decision making that would benefit highly from automated data driven recom-

mendations.

1. Choosing the right programming language

A programming language is one of the tools involved in developing software. There-

fore, ideally, the choice of language should be made based on overall software require-

ments. However, in the real world, the choice of programming language is dominated
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by two factors: (1) expertise of developers who will be working on the project, (2)

managerial decisions driven by experience, or legacy reasons, or intuition [30]. Another

real-world scenario we often encounter is changing the primary language of the code

base. This decision can however be influenced by several factors: (1) initial reasons

for the language choice changes due to change in software specifications, (2) char-

acteristics of the programming language that affect development, e.g., performance

issues, (3) developer expertise has changed, etc. Therefore the choice of programming

language (either before the project has started or after a significant portion of the

code base has been developed in another language) in software development puts us

in a position to ask how can we measure the benefit of choosing one language over

another and thus enable software practitioners to take wiser decisions based on field-

data rather than intuitions and experience. To this end, we model the problem of

programming language choice based on its effects on software quality and mainte-

nance. We hypothesize that the underlying programming language affects software

quality and hence, the choice should be made carefully.

2. Finding the right developer to fix a bug

Software bugs are inevitable and bug fixing is a difficult, expensive, and lengthy

process. One of the primary reasons why bug fixing takes so long is due to the

difficulty of accurately assigning a bug to the most competent developer for that bug

type. Assigning a bug to a potential developer, also known as bug triaging, is a labor-

intensive, time-consuming and fault prone process if done manually. Moreover, bugs

frequently get re-assigned to multiple developers before they are resolved, a process
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known as bug tossing. We show that machine learning and probabilistic graph based

recommendation models can efficiently automate the bug triaging process.

3. Predicting effects of code changes and team reorganizations on software quality

Changes in software development are multi-faceted: changes in software requirements,

developer expertise, underlying programming language, source code, etc. are crucial

to allow continued development of a software project. To effectively manage change,

developers and managers must assess the effects involved in making a change. There-

fore to enable practitioners understand the potential threats associated with change,

it is important quantify and estimate several facets of software changes that can help

prioritize debugging efforts and fore-warn about defect-prone releases.

4. Quantifying roles and expertise in open source projects

The inherent nature of open source software development enables volunteers to help

in multiple facets of software development. This approach is significantly different

from commercial software development where each individual has a defined role in

the project. On one hand, the flexibility of working-on-what-you-like mindset in

OSS (i.e., an individual can decide his contribution) has led to widely-used, popular

projects (e.g., Mozilla, Eclipse, Apache). On the other hand, this freedom has made

human resource allocation and management challenging with increase in software size

and individuals contributing to the project [117].
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1.3.3 Searching Across Repositories

Our search-based framework is designed to serve two purposes: providing recom-

mendations and answering search-based queries. Search-based queries can be used both by

software practitioners and empirical software engineering researchers. In the last part of

this dissertation, we show that the framework while allowing efficient search and analysis

on software evolution data, has two main inconveniences: (1) it is not flexible enough, e.g.,

it can only permit a limited range of queries, or have fixed search templates; (2) it is not

powerful enough, e.g., it does not allow recursive queries, or do not support negation; how-

ever, these features are essential for a wide range of search and analysis tasks. We argue

the need for a framework built with recursively enumerable languages, that can answer

temporal queries, and supports negation and recursion. To this end, as a first step toward

such a framework, we present a Prolog-based system that we built, along with an evaluation

of real-world integrated data from the Firefox project. Our system allows for elegant and

concise, yet powerful queries, and can be used by developers and researchers for frequent

development and empirical analysis tasks.

1.4 Contributions

This dissertation makes the following contributions that significantly advance the

state-of-the-art in mining software repositories to automate the decision making process in

software development.

1. We design a generic data-driven framework by exploiting relationships within and
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across multiple software repositories that can be used both for generating recommen-

dations for decision-making problems and for searching across repositories,

2. To demonstrate the effectiveness of our recommendation-property of the framework,

we identify four routine and important decision-making problems in software devel-

opment that could benefit from data-driven recommendations. In particular, we show

how we can automate the bug assignment process with high precision, help prac-

titioners differentiate between effects of programming language on software quality,

identify pivotal moments during software evolution using graph-mining and predict

the role of a contributor plays in the project with high accuracy. We applied and

demonstrated the validity of our recommendations framework on large, widely-used,

long-lived, real-world software projects.

3. Using a Prolog-driven query management system in addition to our generic framework,

we show how we can further improve searching in software repositories.

1.5 Organization

This dissertation is organized as follows: in the first part, we provide an overview

of the generic data-driven framework we build (Chapter 2). In the second part (Chapters

3– 6), we show how we use this framework for providing recommendations for four novel

decision-making problems. In the third part, we show how we use our framework for building

an effective search engine (Chapter 7). In Chapter 8 we discuss related work and describe

our experiences-lessons learned while carrying out this work and outline future directions
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in Chapter 9.
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Chapter 2

Framework Overview

In this chapter we describe the data extraction process and the skeleton of our

data mining–query framework. Software repositories —source code, bug, and developer

repositories— contain a wealth of data. The central idea of this dissertation is to accumulate

data from these multiple sources, discover relationships among various components and help

guide the decision-making process in software engineering. However, before these gigabytes

of data can be used for constructing recommendation engines, the data needs to be collected,

cleaned and put in an appropriate format. This chapter describes in two parts parts how

we build and use this generic data-driven recommendation framework. To give a quick

intuition, in Figure 2.1, we illustrate abstractly the various repositories we consider, and

provide a glimpse of various inter- and intra- relationships we analyze. In our study, we

consider all three software repositories: source code repository, bug repository and developer

repository. As shown in the Figure 2.1, all these repositories are inter-dependent: a change

in one repository induces a change in the other. In this chapter, we describe these inter-
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and intra- dependencies between various elements that form these repositories and how

we can formalize these relationships to build the underlying generic framework. First, in

Section 2.1 we describe the raw data we collect from these multiple software repositories and

various kinds of information we extract from it. Second, in Section 2.2, we describe a novel

mixed-multi graph model that evolves from our framework (as shown in Figure 2.1) and how

we can use the concept of hyperedges to further understand inter-and intra-dependencies

among multiple software components. Third, in Section 2.3, using concrete examples we

illustrate the effectiveness of our framework in answering decision-making or search-based

querying in software engineering.

2.1 Populating the Framework Databases

2.1.1 Raw Data

Source Code Data

The source code of an open source software project is usually stored using standard

open-source revision control systems such as Concurrent Versioning System (CVS), Apache

Subversion (SVN) or Git. The source code of each release is available for check out from

these repositories. After we have checked-out the code for each publicly available release

for each project, we extract the logs of each of the files for a specific release. The log of

each source code file returns the list of changes made to the file. In Figure 2.6 we provide a

snippet of a log of a file from Mozilla Firefox. We collect the following data from log files:

1. File name: we collect the path of each file denoted as RCS in the log file.
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Figure 2.1: Overview of inter-repository dependencies.

2. Committer ID : we collect the email address of the developer who committed the code.

3. Temporal information: for each commit, we extract the date and time of the commit.

4. Number of lines changed : we extract the number of lines added and deleted for each

commit to the file.

5. Commit message: each commit contains a brief description of the commit. For ex-

ample, it might either be the record of the Bug ID which this patch is targeted for

fixing, or the new feature that is being added with this commit.
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Figure 2.2: Bug report header information (sample bug ID 500495 in Mozilla).

Bug Data

Bug databases archive all bug reports and feature enhancement requests for a

project. In Figures 2.2– 2.5, we show parts of sample bug report from Mozilla and activity

related to it. We collect the following data from bug reports:

1. Title and description: the individual who reports a bug submits a title and description

of the bug. The description often contains the series of steps to reproduce the bug.

2. Name or ID of the bug reporter.

3. Temporal information: date and time the bug was reported.

4. Severity : when a bug is reported, the administrators first review it and then assign it

a severity rank based on how severely it affects the program. Table 5.2 shows levels
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Figure 2.3: Bug description (sample bug ID 500495 in Mozilla).

of bug severity and their ranks in the Bugzilla bug tracking system.

5. Priority : a bug’s priority rates the urgency and importance of fixing the bug, relative

to the stated project goals and priorities.

6. OS or platform: a bug for the same software might be only present in one OS and not

in others. Hence, the bug report contains either the specific OS the bug was found in

or if it occurs across all platforms, this attribute is reported as All.

7. Dependencies: a bug X can be dependent on another bug Y when X is manifested

only when bug Y occurs.

8. Product and Component : large projects like Mozilla and Eclipse contain subset of
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Figure 2.4: Comments for a bug report (sample bug ID 500495 in Mozilla).

products and components. For example, a bug in Mozilla might either belong to

product–component Firefox–Security or Thunderbird–GUI.

9. Set of comments: several contributors and contributors discuss about a bug and the

bug report archives all these discussions in the comment section. For each comment,

we retrieve the contributor who commented, the temporal information, and his/her

comments.

10. Contributor activity : we extract the list of contributors who were related to the bug,
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Figure 2.5: Bug activity (sample bug ID 50049 in Mozilla).

for example, who was assigned the bug, who fixed it, who changed the status of the

bug etc.

2.1.2 Data Extraction

In this section, we describe the additional information we compute about the

source code, bugs in the code and the contributors involved in a project using the raw data

that is extracted from various software repositories as explained in Section 2.1.1.

Source Code Data

We compute the following types of information about source code files:
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RCS file: 
/cvsroot/mozilla/browser/components/migration/src/ns
CaminoProfileMigrator.cpp,v 
Working file: 
browser/components/migration/src/nsCaminoProfileMigr
ator.cpp 
total revisions: 14; selected revisions: 14 
 
description: 
---------------------------- 
revision 1.12 
date: 2006/11/13 17:53:00;  author: 
benjamin%smedbergs.us;  state: Exp;  lines: +1 -0 
Re-land bug 345517 now that the logging issues are 
hopefully fixed, r=darin/mento/mano 
---------------------------- 
revision 1.11 
date: 2006/11/10 04:42:01;  author: 
pavlov%pavlov.net;  state: Exp;  lines: +0 -1 
backing out 345517 due to leak test bustage 
---------------------------- 
revision 1.10 
date: 2006/11/09 15:02:27;  author: 
benjamin%smedbergs.us;  state: Exp;  lines: +1 -0 
Bug 345517, try #2, make the browser component use 
frozen linkage, so that ff+xr builds. This does 
*not* --enable-libxul by default for Firefox (yet). 
That will wait until after 1.9a1. Older patch 
r=darin+mento, revisions r=mano 
---------------------------- 
revision 1.9 
date: 2006/08/10 14:06:46;  author: 
benjamin%smedbergs.us;  state: Exp;  lines: +0 -1 
Backout bug 345517 due to various issues. 
---------------------------- 

Figure 2.6: Example log file from the Firefox source code.

• Effective Lines of Code (eLOC): we compute the effective lines of code for each source

code file. eLOC is the measurement of all lines that are not comments, blanks or

standalone braces or parenthesis in a source code file.

• Cyclomatic Complexity: cyclomatic complexity (also known as McCabe’s Complexity)

of a program is defined as the number of linearly independent paths through the source

code [105]. For instance, if a source code file contains no decision points such as IF
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Bug Severity Description Rank
Blocker Blocks development test-

ing work
6

Critical Crashes, loss of data, se-
vere memory leak

5

Major Major loss of function 4
Normal Regular issue, some loss

of functionality
3

Minor Minor loss of function 2
Trivial Cosmetic problem 1
Enhancement Request for enhancement 0

Table 2.1: Bug severity: descriptions and ranks.

statements or FOR−NEXT loops, the complexity would be 1, since there is only a

single path through the code. On the other hand, if the code has a single IF statement

containing a single condition there would be two paths through the code, one path

where the IF statement is evaluated as TRUE and one path where the IF statement

is evaluated as FALSE.

• Interface Complexity: interface complexity is computed as the number of parameters

and the number of return points for a function.

• Defect Density: defect density is calculated as the number of bugs per line of code for

a file.

• Maintenance Effort: we compute maintenance effort as the number of commits re-

quired per line of code in a program.

• Bug Severity: we compute the median bug severity of each function and module. To

compute this metric, we collect the severity of bugs whose fixing led to a change in
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the function or a module.

• Contributor Profile: we create contributor profiles based on their contribution to the

source code of a project: both for adding new source code to the project and in the

event of fixing bugs. We collect the following four types of information to create a

contributor profile:

1. Contributor ID: a contributor to a software component is someone who has made

commits/software changes to the component. We extract the commit id based

on the log entry to identify all contributors associated with a software project.

2. Seniority: we define seniority as the time a contributor D has been associated

with a project. Hence, seniority is computed as the difference in the number

of years between the first and last commit found in the entire log history of a

project by contributor D.

3. Number of lines of code added: we count the total number of lines of code added

by a contributor during his lifetime association with a project.

4. Number of bug-fix commits: we count the number of source code changes that a

contributor committed in the event of a bug-fix.

5. Number of files committed to: we count the number of files a contributor D has

committed to.

6. Ownership: file ownership is computed as the proportion of commits a contribu-

tor has made relative to the total number of commits for that file. For example,

if file abc.cpp has 10 commits, and contributor D has committed twice, his pro-
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portion of ownership would be 20%.

7. Language-based contribution: we compute how many different file types (e.g., .c,

.cpp, .java, .html, .pl, .py etc.) a contributor has committed to and the frequency

of those contribution.

Bug Data

We compute the following types of information about source code files:

• Bug-fix time: we compute the time it took to fix a bug; i.e., the difference in the

number of days from the date the bug was reported until it was fixed and closed.

• Bug-tossing paths: we collect the bug-tossing paths by referring to the bug activity

section of a bug report. A bug-tossing path is defined as the sequence of contributors

who are involved in fixing a bug.

• Bug-fix based contribution profile: similar to source code based contributor profile, we

create bug-fix based contribution profiles of contributors in a project. We extract the

following information creating these profiles:

1. Contributor ID: the contributor ID is the login id an individual uses to participate

in the bug reporting and fixing process.

2. Number of bugs assigned: for each contributor, we count the number of bugs the

person had been assigned during his lifetime.

3. Percentage of bug fixed: for each contributor, we compute the proportion of bugs

he was assigned that he could fix.
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Source code Bugs Contributors
Functions Modules Source-code Bug-based

eLOC eLOC Title, Seniority Seniority
Description

Interface Cyclomatic Dependencies LOC added Total number
Complexity Complexity of bugs assigned

Defect Defect Severity, Ownership Total number
Density Density Priority of bugs fixed

Maintenance Maintenance Comments Number of Average
Effort Effort bug-fix commits bug severity

Bug Severity Bug Severity Status Language-based Sub products-components
contribution contributed to

Table 2.2: Summary of raw and computed data from various repositories.

4. Average bug severity: when a bug is reported, the administrators first review it

and then assign it a severity rank based on how severely it affects the program.

We compute the weighted average severity of bugs that a contributor has worked

on.

5. Seniority: for bug-fix induced seniority, we define seniority as the difference in

time between the first and last time the member fixed a bug, as recorded in the

bug tracker.

6. Sub-Product-Component contribution: large projects like Mozilla, Eclipse have

sub-products and sub-components within each product. For example, Firefox,

Thunderbird, SeaMonkey are three popular sub-products in Mozilla and each

of these products have sub-component modules like GUI, Security, etc. Each

contributor has a list of all products and components he/she has worked on

during his association with the project and the frequency of each association.
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To summarize, we provide a compact table (2.2) to show what different types of

data we have related to various software artifacts. With both the raw data (i.e., information

available directly from the repositories) and the computed data (i.e., data we compute

using the raw data) in hand, we now move to show how the data collected and computed

from multiple repositories are interconnected and dependent on each other.

2.2 Representing Software Repositories as a Mixed-multi Graph

In this section we explain how various relationships that exist between different

components in different repositories — source-code, bugs and contributors — can be used

to build a mixed-multi graph, as shown in Figure 2.1.

Definition(Mixed-multi graph). GInterRepoDep = (V,E,W) such that,

V: set of vertices’s such that a vertex v can denote a function call (vfunc), or a module

(vmod), or a bug (vbugid) or a contributor (vcontributor),

E: set of directed and undirected edges between any two vertices’s,

W: weight of an edge W is optional and would refer to the strength of a connection be-

tween two vertices’s depending on which two types of nodes the edge is connecting and the

significance of the relationship.

Using data from multiple repositories as shown in Figure 2.1, 1 we create the

mixed-multi graph that has the following properties: (1) contains nodes of three types,

namely, source code elements (functions or modules), bugs and contributors, (2) contains

directed edges that denote any dependency or direct relationship, and (3) undirected edges
1We describe this data collection-extraction process in Section 2.1.
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Edge in the graph Relationship
S4 → S5

S2 → S3 Source code dependencies (e.g., S4 depends on S5)
S6 → S5

S2 → S6 Source code mutual dependency (recursive-call)
S1 − S2 − S3 Co-changed source code elements
D3 → S3 Developer added code as enhancement
D4 → S2 (e.g., developer D3 added code to source code file S3)
D5 → S1

D4 → S3 Developer changed code for bug-fix
D4 → S6 Developer changed code both during bug-fix and enhancement
B3 → B2 Bug dependency
D4 → B1 Developer D4 fixed bug B1

D1 → B3 Developer D1 was assigned bug B3 (was unable to fix)
B2 ↔ S5 Bug from code and bug-fix changed file
B2 → S4 Fixing bug B2 changed file S5

D4 → D3 Tossing probability
D4 −D2 Social interactions (e.g., commented on same bug,
D2 −D3 replied to same forum discussion topic)

(a) Examples of relationships between multiple repositories.

(b) Graph GInterRepoDep generated using relationships in

Table 2.7(a)

Figure 2.7: Example of a mixed-multi graph created from inter-repository dependencies.
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which refer to indirect relationships. We demonstrate a sample mixed graph in our case in

Figure 2.7(b) where blue nodes (labelled as Sx) refer to source code elements, dotted nodes

(labelled as Dx) refer to contributors and pink nodes (labelled as Bx) refer to bugs. Various

relationships that can exist among these nodes are instantiated in Table 2.7(a).

Next, we describe the notion of hyperedges to model and discover amorphous

relationships between various software elements. Hypergraphs are a generalization of a

graph, where an edge can connect any number of vertices. Formally, a hypergraph H is a pair

H = (X,E) where X is a set of elements, called nodes or vertices, and E is a set of non-empty

subsets of X called hyperedges or links. In Figure 2.8 we show a hypergraph G, such that

X = {A,B,C,D,E, F,G,H, I} and E = {e1, e2, e3, e4, e5} = {{B,C}, {A,B,C}, {D,E},

{C,F,G,H}, {I}}. In our case, we construct hyperedges linking any combination of the

different types of nodes: source code elements (functions or modules), contributors and

bugs to establish relationships between several artifacts across software repositories.

Figure 2.8: Example of hyperedges in a mixed graph.
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As shown in Figure 2.7(b), the mixed-multi graphs are first created by using various

information available from repositories. In Figure 2.7(b), blue nodes (labelled as Sx) refer

to source code elements, green nodes (labelled as Dx) refer to contributors and pink nodes

(labelled as Bx) refer to bugs. Various example relationships that can form edges between

these nodes are instantiated in Table 2.7(a).

2.2.1 Intra-repository Dependencies

In this section we illustrate the networks that are formed within each software

repository and how the attributes depend on each other within a repository. Further, we

show how these networks can be deduced from mixed-multi graph GInterRepoDep using the

concept of hyperedges as described earlier in this section.

Source-code Repository

We construct two kinds of dependency graphs using the source code data:

1. Function-call graphs:

Definition(Function-call). Directed graph GFunc = (V,E) such that,

V: set of functions in a program which form the nodes in GFunc,

E: set of edges such that e is an edge v1 → v2 such that v1 calls to v2, and v1, v2 ε V.

We can deduce GFunc from GInterRepoDep using the following relation:

GFunc = {(v1, v2)|(v1, v2) ∈ GInterRepoDep|vfunc ∧ W (v1 → v2) ≥ 1}
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Figure 2.9: An overview of intra-repository dependencies.

The function call graph captures the static caller-callee relationship. If function A

calls function B, the function call graph contains two nodes, A and B, and a directed

edge from node A to node B. Our data set contains several applications written in

a combination of C and C++; for virtual C++ methods, we add edges to soundly

account for dynamic dispatch. Function call graphs are essential in program under-

standing and have been shown effective for recovering software architecture for large

programs [27].

2. Module collaboration graphs:

Definition(Module-collaboration). Directed graph GMod = (V,E) such that,
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V: set of modules in a program which form the nodes in GMod,

E: set of edges such that e is an edge v1 → v2 such that at least one function in v1

calls to another function in v2, and v1, v2 ∈ V.

We can deduce GMod from GInterRepoDep using the following relation:

GMod = {(v1, v2)|(v1, v2) ∈ GInterRepoDep|vmod ∧ W (v1 → v2) ≥ 1}

This graph captures communication between modules, and is coarser-grained than

the function call graph. We construct the module collaboration graph as follows: if a

function in module A calls a function in module B, the graph contains a directed edge

from A to B. Similarly, if a function in module A accesses a variable defined in module

B, we add an edge from A to B. Module collaboration graphs help us understand how

software components communicate.

Bug Repository

We construct the bug dependency graphs as described next using the data from bug repos-

itories:

Definition(Bug-dependency). Mixed graph GBugDep = (V,E) such that,

V: set of bugs in a project,

E: set of directed edges E1 and undirected edges E2 such that:

E1: a directed edge between two bugs v1 → v2 when v1 is a child bug of v2,

E2: an undirected edge between two bugs v1 and v2 such that bugs v1 and v2 have similar
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issues (or are Duplicate bugs).

We can deduce GBugDep from GInterRepoDep using the following relation:

GBugDep = {(v1, v2)|(v1, v2) ∈ GInterRepoDep|vbug ∧ W (v1 → v2) ≥ 1}

Mixed graph GBugDep shows how bugs depend on each other. A directed edge

between two bugs, say bug X and bug Y, demonstrates direct dependency because bug X is

exhibited only when bug Y manifests. In other words, X is a child bug of Y. On the other

hand, an undirected edge between X and Y would mean that X and Y are similar bugs, and

on fixing X, bug Y was also fixed by using the same patch or similar resolution strategy.

Developer Networks

1. Source-code based collaboration graph:

Definition(Source-code based collaboration). Mixed directed weighted graph

GSrcCodeColl = (V,E,W) such that,

V: set of contributors who have been committed to the source code repository,

E: set of edges such that e is an edge between contributors v1 and v2 if v1 and v2

changed the same file,

W: set of weights w1 and w2 computed such that:

w1: weight of an edge which measures how many times two contributors have co-

worked on the same file while adding new code to the project (feature enhancement),

w2: weight of an edge which measures how many times two contributors have co-
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worked on the same file while fixing a bug in the project.

We can deduce GSrcCodeColl from GInterRepoDep using the following relation:

GSrcCodeColl = {(v1, v2)|(v1, v2) ∈ GInterRepoDep|vcontributor ∧ ∃(v1 → src1 ∧

v2 → src2, (src1, src2) ∈ vfunc ∨ (src1, src2) ∈ vmod)}

To capture the relationship between how contributors interact with each other while

making changes to the source code either while adding new code to the repository or

fixing a bug we build this mixed undirected graph.

2. Bug tossing graphs:

Definition(Bug-tossing). Directed weighted graph GBugToss = (V,E,W) such that,

V: set of contributors who have been assigned a bug at least once during his association

with a software project,

E: set of edges such that e is an edge from developer v1 from v2 if v2 fixed a bug that

was assigned to v1,

W: weight of an edge w is equal to tossing probability between two contributors as

described using equation 3.2.

We can deduce GBugToss from GInterRepoDep using the following relation:

GBugToss = {(v1, v2)|(v1, v2) ∈ GInterRepoDep|vcontributor ∧ 0 ≤W (v1 → v2) ≤ 1}

When a bug is assigned to a developer for the first time and she is unable to fix it, the

bug is assigned (tossed) to another developer. Thus a bug is tossed from one developer
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to another until a developer is eventually able to fix it. Based on these tossing paths,

goal-oriented tossing graphs were proposed by Jeong et al. [76]; for the rest of the

dissertation, by “tossing graph” we refer to a goal-oriented tossing graph. Tossing

graphs are weighted directed graphs such that each node represents a developer, and

each directed edge from D1 to D2 represents the fact that a bug assigned to developer

D1 was tossed and eventually fixed by developer D2. The weight of an edge between

two developers is the probability of a toss between them, based on bug tossing history.

We denote a tossing event from developer D to Dj as D ↪→ Dj . The tossing probability

(also known as the transaction probability) from developer D to Dj is defined by the

following equation where k is the total number of developers who fixed bugs that were

tossed from D:

Pr(D ↪→ Dj) =
#(D ↪→ Dj)∑k
i=1 #(D ↪→ Di)

(2.1)

In this equation, the numerator is the number m of tosses from developer D to Dj

such that Dj fixed the bug, while the denominator is the total number of tosses from

D to any other developer Di such that Di fixed the bug. Note that if k = 0 for

any developer D, it denotes that D has no outgoing edge in the bug tossing graph.

To illustrate this, in Table 3.1 we provide sample tossing paths and show how toss

probabilities are computed. For example, developer A has tossed four bugs in all,

three that were fixed by D and one that was fixed by C, hence Pr(A ↪→ D) = 0.75,

Pr(A ↪→ C) = 0.25, and Pr(A ↪→ F ) = 0. Note that developers who did not toss

any bug (e.g., F ) do not appear in the first column, and developers who did not fix
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Figure 2.10: Tossing graph built using tossing paths in Table 3.1.

Tossing paths
A→ B → C → D
A→ E → D → C
A→ B → E → D
C → E → A→ D
B → E → D → F

Developer Total Developers who fixed the bug
who tossed tosses C D F

the bug # Pr # Pr # Pr

A 4 1 0.25 3 0.75 0 0
B 3 0 0 2 0.67 1 0.33
C 2 - - 2 1.00 0 0
D 2 1 0.50 - - 1 0.50
E 4 1 0.25 2 0.50 1 0.25

Table 2.3: Tossing paths and probabilities as used by Jeong et al.

any bugs (e.g., A) do not have a probability column. In Figure 3.3, we show the final

tossing graph built using the computed tossing probabilities. It is common in open
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source projects that when a bug in a module is first reported, the developers associated

with that module are included in the list of assignees by default. The purpose of our

automatic bug assignment approach is, given a bug report, to predict developers who

could be potential fixers and email them, so that human intervention is reduced as

much as possible.

To summarize, in this section we described the various networks that emerge from

analyzing the various dependencies and relations among various software artifacts and con-

tributors.

2.3 Search and Recommendation

As shown in Section 2.2, all software elements—code, contributors, bugs—of a

project are deeply interconnected. As software projects grow, contributors are overwhelmed

whenever they are faced with tasks such as program understanding or searching through

the evolution data for a project. Examples of such frequent development tasks include

understanding the control flow, finding dependencies among functions, finding modules

that will be affected when a module is changed, etc. Similarly, during software maintenance,

frequent tasks include developer coordination, keeping track of files that are being changed

due to a bug-fix, what other module are affected when a bug is being fixed, finding which

developer is suitable for fixing a bug (e.g., given that she has fixed similar bugs in the

past or she has worked on the modules that the bug occurs in). Therefore, an integrated

system that combines these multiple repositories along with efficient search techniques that

and can answer a broad range of queries regarding the project’s evolution history would
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be beneficial to all classes of software practitioners: contributors, testers and managers. In

addition, a framework that allows querying and aggregation on integrated evolution data

for large projects would be beneficial for research in empirical software engineering, where

data from multiple repositories are frequently used for hypothesis testing. Search-based

querying refers to finding information that are already there in the repositories. On the

other hand, recommendation-based querying refers to intelligent searching such that the

results are not readily available and needs to be compiled from various data sources using

several metrics and heuristics.

2.3.1 Querying Software Repositories

An example. Bug fix patch ID’s should ideally be recorded both in the bug report

(in the bug repository) and in the commit log for that patch (in the source code repository).

However, in practice, this is often not the case. For instance, either commit logs contain

bug ID’s that refer to a corresponding bug-fix patch while bug repsoitories do not have

information about which files were changed during a bug-fix or vice versa but not both.

Let an example search query Q be: “Return the list of files that were changed while fixing

Mozilla bug 500495 ”. According to the commit logs, a fix to Mozilla bug 500495 resulted in

changes to 186 files in Mozilla source code. However, the bug report just contains the patch

from one of the files /cvsroot/mozilla/client.mk. Additionally, the commit log contains

the information of the developer who committed the final changes. The bug report on the

other hand contains the information about who submitted the first patch for review and

list of people who super-reviewed the patch. Using our framework, query Q can be written
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as:

Q = {(v1, v2)|(v1, v2) ∈ GInterRepoDep|v1 ∈ (vfunc ∨ vmod) ∧

(v2 ∈ vbug ∧ vbug[BugId = 500495])}

Search-based framework. To answer queries (similar to the example shown

earlier in this subsection) which involves integrating information across multiple repositories,

our search-based query framework simply uses the mixed-multi graph, GInterRepoDep we built

in Section 2.2. For example, for the same example query instantiated earlier, “Return the

list of files that were changed while fixing Mozilla bug 500495 ”, our framework would simply

return all nodes that are of type module and are connected to bug node of ID 500495. This

relationship can be referred to the set of edges between a bug and a source code element

(for instance, edge B2 → S4 in Figure 2.7(b)).

2.3.2 Recommendation-based Querying

While integrating information across multiple repositories can help answer search-

based queries, it is not enough for providing recommendations to software practitioners. For

example, consider a query Q1: “Return a set of contributors who has the required expertise

to fix bug B.” For queries like this, it is not sufficient to use straight-forward relationships

by querying the multi-mixed graphs. We show that these kinds of complex queries can be

solved in two steps: first, by extracting entities and relationships among them that affect

the complex query (by using the notion of hyperedges) and second, by using additional

statistical-machine learning-network science based techniques on these extracted graphs to

provide recommendations for the query. For example, to answer query Q1, we first extract
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the network among all contributors involved in the bug fix process (such that they were

assigned at least one bug during their lifetime) from GInterRepoDep using the query:

Q1 = {(v1, v2)|(v1, v2) ∈ GInterRepoDep|vcontributor ∧ (v1[BugsAssigned >

0], v2[BugsAssigned > 0]) ∧ 0 ≤W (v1 → v2) ≤ 1}

This query returns the graph of contributors who were assigned at least one bug

during their lifetime and the bugs were either fixed by them or tossed (aka reassigned)

to other contributors in the project. After extracting this graph, as described in detail

in Chapter 3, we show how we apply text-mining and probabilistic graph algorithms to

answer query Q1 at a high precision rate. We provide another example of a commonly

used recommendation-based query Q2 by software practitioners for finding patch reviewers:

“Return a set of contributors who has the required expertise to review a patch submitted

for bug B.” Using the query below, we first extract the list of all contributors who have the

required expertise to review a patch, i.e., they have either reviewed patches before, or they

have worked on source code files directly or indirectly related to the patch file or they have

fixed bugs dependent on bug B. Next, as we show in Chapter 6, we rank contributors (based

on several other expertise metrics) in the list returned by query Q2 to further generate top-k

experts for this task.

Q2 =

{(v1, v2)|(v1, v2) ∈ GInterRepoDep|d ∈ vcontributor, b ∈ vbug, s ∈ vsource, s[bugfix(b) = 1]

∧ ((d[PatchReviewed > 0]) ∨ (d[changed(s) = 1] ∨ d[author(s) = 1])

∨ (d[changed(src1) = 1] ∨ d[author(src1) = 1], src1 ∈ vsource ∧ W (s, src1) > 0)
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∨ (d[FixedBug(b1) = 1] ∧ W (b, b1) = 1 ∧ b1 ∈ vbug))}

Therefore, at an abstract level, recommendation-based queries help us first filter

out a small set of nodes and their relationships (i.e., edges between them) from the large

mixed graphs to answer specific queries of interest. In this dissertation, we consider four

such commonly-used, novel recommendation problems in the context of software develop-

ment that can facilitate decision-making. We show that each of these recommendation

problems require different set of graphs (i.e., software components) that are extracted pri-

marily from theGInterRepoDep graph which we can further analyze to provide highly-accurate

data-driven recommendations.

2.4 Open-source Projects Used As Benchmarks

To validate our recommendation and search algorithms, we used eleven popular

open source applications written mainly in C, or combinations of C and C++. We select

applications that have: (a) long release history, (b) significant size (in lines of code and

modules), (c) a large set of developers who maintain them, (d) a large user base, who

report bugs and submit patches. The above criteria are necessary for making meaningful

statistical, behavioral, and evolutionary observations. We now provide a brief overview of

each application.

• Firefox is the second most widely-used web browser [49]. Originally named Phoenix, it

was renamed to Firebird, and then renamed to Firefox in 2004. We considered Phoenix
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Application Time Release Language Size (kLOC) Ref. Chapters
span First Last

release release
Firefox 1998-2010 92 C,C++ 1,976 3,780 3,4,5,6,7
Eclipse 2001-2010 27 Java 828 1,903 3,5,6
Blender 2001-2009 28 C,C++ 253 1,144 4,5
VLC 1998-2009 83 C,C++ 144 293 4,5
MySQL 2000-2009 13 C,C++ 815 991 5
Samba 1993-2009 78 C 5 1,045 5
Bind 2000-2009 171 C 169 321 5
Sendmail 1993-2009 55 C 25 87 5
OpenSSH 1999-2009 77 C 12 52 5
SQLite 2000-2009 169 C 17 65 5
Vsftpd 2001-2009 59 C 6 15 5

Table 2.4: Applications’ evolution span, number of releases, programming language, size of
first and last releases.

and Firebird in our study because the application’s source code remained unchanged

after the renamings. Firefox is mostly written in C and C++; it also contains HTML

and JavaScript code that contribute to less than 3% of the total code.

• Blender is a 3D content creation suite, available for all major operating systems. It

is mostly written in C and C++; it also has a Python component that contributes

to less than 2% of the total code. We used the source code available in the SVN

repository for our analyses [26].

• VLC is a popular [162], cross-platform open-source multimedia framework, player and

server maintained by the VideoLAN project.

• MySQL is a popular [120] open source relational DBMS. MySQL was first released

internally in 1995, followed by a publicly available Windows version in 1998. In 2001,

with version 3.23, the source code was made available to the public. Therefore, for
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measuring internal quality and maintenance effort, we consider 13 major and minor

releases since 3.23. Our external quality measurements depend on the bug databases

of the applications; for MySQL, the database stores bug and patch reports for major

releases 3.23, 4.1, 5.0, 5.1, and 6.0 only, thus our external quality findings for MySQL

are confined to major releases only.

• Samba is a tool suite that facilitates Windows-UNIX interoperability. According to its

change log and history files, initial development for the program that would eventually

become Samba was on and off between Dec. 1991 and Dec. 1993. However, the first

officially announced release, then called Netbios for Unix was version 1.5.00, on Dec.

1, 1993. The first official release we could find was 1.5.14, dated Dec. 8, 1993. As

shown in Table 1, over the past 15 years, the server grew from 5,514 LOC to more

than 1,000,000 LOC.

• Sendmail is the leading email transfer agent today. While its initial development goes

back to the early 1980s, we had to limit our analysis to version 8.6.4 (Oct. 1993) due

to configuration and preprocessing problems that make analyzing earlier versions very

difficult.

• Bind is the leading DNS server on the Internet. According to its official history, 2

Bind development goes back to the early 1980s, but the current line, Bind 9, is a

major rewrite. We analyzed all the 171 versions, from 9.0.0b1 (Feb. 2000) to 9.6.1b1

(March 2009).
2https://www.isc.org/software/bind/history
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• OpenSSH is the standard open source suite of the widely-used secure shell protocols.

The first official release we could find was 1.0pre2, dating back to October 1999. Since

then, OpenSSH has grown more than four-fold, from 12,819 LOC to 52,284 LOC over

78 official releases.

• SQLite is a popular library implementation of a self-contained SQL database engine.

Starting from its initial version, 1.0 (Aug. 2000), comprising 17,723 LOC, SQLite has

grown to 65,108 LOC in version 3.6.11 (Feb. 2009).

• Vsftpd stands for Very Secure FTP Daemon and is the FTP server in major Linux

distributions. The first beta version, 0.0.9, was released on January 28, 2001. We

analyzed its entire history, 60 versions over 8 years.

• Quagga is a tool suite for building software routers. Similar to Sendmail, we had to

stop our analysis at version 0.96 (Aug. 2003) due to configuration and preprocessing

problems with earlier versions.

• Eclipse is a multi-language software development environment comprising an inte-

grated development environment (IDE) and an extensible plug-in system. It is written

mostly in Java.

In Table 2.4 we list these applications involved in our study, along with some key

properties. The second column shows the time span we consider for each application, the

third column contains the number of official releases within that time span; we analyzed all

these releases. Column 4 shows the main language(s) the application was written in; some

of the applications have small parts written in other languages, e.g., JavaScript. Columns
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5 and 6 show application size, in effective LOC, for the first and last releases. Column 7

lists the reference to the chapters where these applications have been used as benchmarks

for evaluating our prediction–recommendation models. The long time spans we consider

(e.g., Samba has grown by a factor of 200x over 16 years) allow us to analyze evolution

rigorously, obtain statistically significant results, and observe a variety of change patterns

in the graphs. For each application, we have used its website to obtain the source code

of official releases. We used applications’ version control systems for extracting file change

histories and patches. Finally, we extracted bug information from application-specific bug

tracking systems.

2.5 Summary

In this chapter, we presented an overview of the data extraction and query frame-

work. We first showed how various software development entities are related between and

amongst themselves. Second, we showed the need for integrating information across multi-

ple data repositories to precisely answer user queries. Third, we introduced the concept of

search-based and recommendation-based frameworks and showed with specific instances the

significance of each. In the next part of the dissertation, we describe the four recommenda-

tion frameworks we built to answer user-queries to facilitate quantitative decision-making

in software development.
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Recommendations for Four

Decision-making Problems
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Chapter 3

Automating Bug Assignment

Empirical studies indicate that automating the bug assignment process has the

potential to significantly reduce software evolution effort and costs. Prior work has used

machine learning techniques to automate bug assignment but has employed a narrow band of

tools which can be ineffective in large, long-lived software projects. To redress this situation,

in this chapter we employ a comprehensive set of machine learning tools and a probabilistic

graph-based model (bug tossing graphs) that lead to highly-accurate predictions, and lay

the foundation for the next generation of machine learning-based bug assignment. Our

work is the first to examine the impact of multiple machine learning dimensions (classifiers,

attributes, and training history) along with bug tossing graphs on prediction accuracy in

bug assignment. We validate our approach on Mozilla and Eclipse, covering 856,259 bug

reports and 21 cumulative years of development. We demonstrate that our techniques

can achieve up to 86.09% prediction accuracy in bug assignment and significantly reduce

tossing path lengths. We show that for our data sets the Näıve Bayes classifier coupled with
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product–component features, tossing graphs and incremental learning performs best. Next,

we perform an ablative analysis by unilaterally varying classifiers, features, and learning

model to show their relative importance of on bug assignment accuracy. Finally, we propose

optimization techniques that achieve high prediction accuracy while reducing training and

prediction time.

3.1 Introduction

Most software projects use bug trackers to organize the bug fixing process and

facilitate application maintenance. For instance, Bugzilla is a popular bug tracker used by

many large projects, such as Mozilla, Eclipse, KDE, and Gnome [33]. These applications

receive hundreds of bug reports a day; ideally, each bug gets assigned to a developer who

can fix it in the least amount of time. This process of assigning bugs, known as bug assign-

ment1, is complicated by several factors: if done manually, assignment is labor-intensive,

time-consuming and fault-prone; moreover, for open source projects, it is difficult to keep

track of active developers and their expertise. Identifying the right developer for fixing a

new bug is further aggravated by growth, e.g., as projects add more components, modules,

developers and testers [75], the number of bug reports submitted daily increases, and man-

ually recommending developers based on their expertise becomes difficult. An empirical

The work presented in this chapter have been published in the proceedings of the 2010 IEEE International
Conference on Software Maintenance [17].

1In the software maintenance literature, “bug triaging” is used as a broader term referring to bug assign-
ment, bug validation, marking duplicate bugs, etc. In this chapter, by bug triaging we mean bug assignment
only, i.e., given a bug report that has been validated as a real bug, find the right developer whom the bug
can be assigned to for resolution.
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study by Jeong et al [76] reports that, on average, the Eclipse project takes about 40 days

to assign a bug to the first developer, and then it takes an additional 100 days or more to

reassign the bug to the second developer. Similarly, in the Mozilla project, on average, it

takes 180 days for the first assignment and then an additional 250 days if the first assigned

developer is unable to fix it. These numbers indicate that the lack of effective, automatic

assignment and toss reduction techniques results in considerably high effort associated with

bug resolution.

Effective and automatic bug assignment can be divided into two sub-goals: (1)

assigning a bug for the first time to a developer, and (2) reassigning it to another promising

developer if the first assignee is unable to resolve it, then repeating this reassignment process

(bug tossing) until the bug is fixed. Our findings indicate that at least 93% of all “fixed”

bugs in both Mozilla and Eclipse have been tossed at least once (tossing path length ≥ 1).

Ideally, for any bug triage event, the bug should be resolved in a minimum number of tosses.

In this chapter, we explore the use of machine learning toward effective and au-

tomatic bug assignment along three dimensions: the choice of classification algorithms, the

software process attributes that are instrumental to constructing accurate prediction mod-

els, and the efficiency–precision trade-off. Our thorough exploration along these dimensions

have lead us to develop techniques that achieve high levels of bug assignment accuracy and

bug tossing reduction. In Figure 3.1 we show the nodes and edges we extract from the multi-

mixed graph to build the bug tossing graph (explained in Section 2.2.1) for automating the

bug assignment process.

Similar to prior work, we test our approach on the fixed bug data sets for Mozilla
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Figure 3.1: Hypergraph extraction for automatically assigning bugs (edges for graph
GBugToss).

and Eclipse. Our techniques achieve a bug assignment prediction accuracy of up to 85%

for Mozilla and 86% for Eclipse. We also find that using our approach reduces the length

of tossing paths by up to 86% for correct predictions and improves the prediction accuracy

by up to 10.78 percentage points compared to previous approaches. We demonstrate that

on average, the highest prediction accuracy is achieved using a Näıve Bayes classifier, with

products/components as attributes, with bug triaging graphs, and with incremental learning

(aka intra-fold updates). We then follow a standard machine learning ablative analysis: 2

we take our best case (top of the figure) and unilaterally vary the underlying attributes

to show their relative importance in Section 3.4—the corresponding subsections are shown

on the bottom of the figure. The primary goal of our work is to find the optimal set of

machine learning techniques (classifiers, features, tossing graphs and incremental learning)

to improve bug assignment accuracy in large projects and we show this optimal set for our
2Ablative analysis is a methodology to quantify the effects of each attribute in a multi-attribute model.
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data sets, Mozilla and Eclipse. The optimal set of techniques we report can change with

changes in data sets for the same project or across other projects, or with changes in the

underlying supervised learning algorithm and we address these issues as potential threats

to validity of our approach in Section 3.5.

Wide range of classification algorithms. Machine learning is used for recom-

mendation purposes in various areas such as climate prediction, stock market analysis, or

prediction of gene interaction in bioinformatics [170]. Machine learning techniques, in par-

ticular classifiers,3 have also been employed earlier for automating bug assignment. These

automatic bug assignment approaches [8, 39, 12, 36] use the history of bug reports and

developers who fixed them to train a classifier. Later, when keywords from new bug reports

are given as an input to the classifier, it recommends a set of developers who have fixed

similar classes of bugs in the past and are hence considered potential bug-fixers for the new

bug. Prior work that has used machine learning techniques for prediction or recommenda-

tion purposes has found that prediction accuracy depends on the choice of classifier, i.e., a

certain classifier outperforms other classifiers for a specific kind of a problem [170]. Previous

studies [76, 8, 39, 12] only used a subset of text classifiers and did not aim at analyzing

which is the best classifier for this problem. Our work is the first to examine the impact

of multiple machine learning dimensions (classifiers, attributes, and training history) on

prediction accuracy in bug assignment and tossing. In particular, this is the first study in

the area of bug assignment to consider, and compare the performance of, a broad range of

classifiers along with tossing graphs: Näıve Bayes Classifier, Bayesian Networks, C4.5 and
3A classifier is a machine learning algorithm that can be trained using input attributes (also called

feature vectors) and desired output classes; after training, when presented with a set of input attributes, the
classifier predicts the most likely output class.

52



www.manaraa.com

Support Vector Machines.

Effective tossing graphs. Jeong et al. [76] have introduced tossing graphs for

studying the process of tossing, i.e., bug reassignment; they proposed automating bug as-

signment by building bug tossing graphs from bug tossing histories. While classifiers and

tossing graphs are effective in improving the prediction accuracy for assignment and reduc-

ing tossing path lengths, their accuracy is threatened by several issues: outdated training

sets, inactive developers, and imprecise, single-attribute tossing graphs. Prior work [76] has

trained a classifier with fixed bug histories; for each new bug report, the classifier recom-

mends a set of potential developers, and for each potential developer, a tossing graph—

whose edges contain tossing probabilities among developers—is used to predict possible

re-assignees. However, the tossing probability alone is insufficient for recommending the

most competent active developer (see Section 3.3.6 for an example). In particular, in open

source projects it is difficult to keep track of active developers and their expertise. To ad-

dress this, in addition to tossing probabilities, we label tossing graph edges with developer

expertise and tossing graph nodes with developer activity, which help reduce tossing path

lengths significantly. We demonstrate the importance of using these additional attributes

in tossing graphs by performing a fine-grained per-attribute ablative analysis which reveals

how much each attribute affects the prediction accuracy. We found that each attribute is

instrumental for achieving high prediction accuracy, and overall they make pruning more

efficient and improve prediction accuracy by up to 22% points when compared to prediction

accuracy obtained in the absence of the attributes.

Accurate yet efficient classification. Anvik’s dissertation [9] has demonstrated
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that choosing a subset of training data can reduce the computation time during the clas-

sification process, while achieving similar prediction accuracies to using the entire data

set; three methods—random, strict and tolerant, were employed for choosing a subset of

training data set as we explain in related work (Section 8.1). In our work, in addition to

classification, we also use a probabilistic ranking function based on bug tossing graphs for

developer recommendation. Since bug tossing graphs are time-sensitive, i.e., tossing proba-

bilities change with time, the techniques used by Anvik are not applicable in our case (where

bug reports were not sorted by time for selection). Therefore, in this chapter, we propose

to shorten the time-consuming classification process by selecting the most recent history

for identifying developer expertise. As elaborated in Section 3.4.7 we found that by using

just one third of all bug reports we could achieve prediction accuracies similar to the best

results of our original experiments where we used the complete bug history. Therefore, our

third contribution in this chapter is showing how, by using a subset of bug reports, we can

achieve accurate yet efficient bug classification that significantly reduces the computational

effort associated with training.

Our chapter is structured as follows. In Section 3.2 we define terms and techniques

used in bug assignment. In Section 3.3 we elaborate on our contributions, techniques and

implementation details. We present our experimental setup and results in Section 3.4.

Finally, we discuss threats to validity of our study in Section 3.5.
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3.2 Preliminaries

We first define several machine learning and bug assignment concepts that form

the basis of our approach.

3.2.1 Machine Learning for Bug Categorization

Classification is a supervised machine learning technique for deriving a general

trend from a training data set. The training data set (TDS) consists of pairs of input objects

(called feature vectors), and their respective target outputs. The task of the supervised

learner (or classifier) is to predict the output given a set of input objects, after being

trained with the TDS. Feature vectors for which the desired outputs are already known

form the validation data set (VDS) that can be used to test the accuracy of the classifier.

A bug report contains a description of the bug and a list of developers that were associated

with a specific bug, which makes text classification applicable to bug assignment. Machine

learning techniques were used by previous bug assignment works [8, 39, 12]: archived bug

reports form feature vectors, and the developers who fixed the bugs are the outputs of

the classifier. Therefore, when a new bug report is provided to the classifier, it predicts

potential developers who can fix the bug based on their bug fixing history.

Feature vectors. The accuracy of a classifier is highly dependent on the feature

vectors in the TDS. Bug titles and summaries have been used earlier to extract the keywords

that form feature vectors. These keywords are extracted such that they represent a specific

class of bugs. For example, if a bug report contains words like “icon,” “image,” or “display,”

it can be inferred that the bug is related to application layout, and is assigned to the
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“layout” class of bugs. We used multiple text classification techniques (tf-idf, stemming,

stop-word and non-alphabetic word removal [101]) to extract relevant keywords from the

actual bug report; these relevant keywords constitute a subset of the attributes used to

train the classifier.

Text Classification Algorithms

We now briefly describe each classifier we used.

Näıve Bayes Classifier. Näıve Bayes is a probabilistic technique that uses Bayes’

rule of conditional probability to determine the probability that an instance belongs to a

certain class. Bayes’ rule states that “the probability of a class conditioned on an observation

is proportional to the prior probability of the class times the probability of the observation

conditioned on the class” and can be denoted as follows:

P (class|observation) =
P (observation|class) ∗ P (class)

P (observation)
(3.1)

For example, if the word concurrency occurs more frequently in the reports resolved

by developer A than in the reports resolved by developer B, the classifier would predict A

as a potential fixer for a new bug report containing the word concurrency. “Näıve Bayes”

is so called because it makes the strong assumption that features are independent of each

other, given the label (the developer who resolved the bug). Even though this assumption

does not always hold, Näıve Bayes-based recommendation or prediction performs well in

practice [43].

Bayesian Networks. A Bayesian Network [86] is a probabilistic model that is
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used to represent a set of random variables and their conditional dependencies by using a

directed acyclic graph (DAG). Each node in the DAG denotes a variable, and each edge

corresponds to a potential direct dependence relationship between a pair of variables. Each

node is associated with a conditional probability table (CPT) which gives the probability

that the corresponding variable takes on a particular value given the values of its parents.

C4.5. The C4.5 algorithm [135] builds a decision tree based on the attributes of

the instances in the training set. A prediction is made by following the appropriate path

through the decision tree based on the attribute values of the new instance. C4.5 builds the

tree recursively in a greedy fashion. Each interior node of the tree is selected to maximize

the information gain of the decision at that node as estimated by the training data. The

information gain is a measure of the predictability of the target class (developer who will

resolve the bug report) from the decisions made along the path from the root to this node

in the tree. The sub-trees end in leaf nodes at which no further useful distinctions can be

made and thus a particular class is chosen.

Support Vector Machines. A SVM (Support Vector Machine [28]) is a su-

pervised classification algorithm that finds a decision surface that maximally separates the

classes of interest. That is, the closest points to the surface on each side are as far as pos-

sible from the decision surface. It employs kernels to represent non-linear mappings of the

original input vectors. This allows it to build highly non-linear decision surfaces without

an explicit representation of the non-linear mappings. Four kinds of kernel functions are

commonly used: Linear, Polynomial, Gaussian Radial Basis Function (RBF) and Sigmoid.

In our study we use Polynomial and RBF functions as they have been found to be most
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effective in text classification.

3.2.2 Folding

Early bug assignment approaches [76, 8, 39] divided the data set into two sub-

sets: 80% for TDS and 20% for VDS. Bettenburg et al. [12] have used folding (similar to

split-sample validation techniques from machine learning [170]) in the context of detecting

duplicate bug reports. In a folding-based training and validation approach, also known as

cross-validation, (illustrated in Figure 3.2), the algorithm first collects all bug reports to be

used for TDS, 4 sorts them in chronological order (based on the fixed date of the bug) and

then divides them into n folds. In the first run, fold 1 is used to train the classifier and then

to predict the VDS. 5 In the second run, fold 2 bug reports are added to TDS. In general,

after validating the VDS from fold n, that VDS is added to the TDS for validating fold

n+ 1. To reduce experimental bias [170], similar to Bettenburg et al., we chose n = 11 and

carried out 10 iterations of the validation process using incremental learning. Note that

incremental learning is not a contribution of our work; incremental learning is a standard

technique to improve the prediction accuracy in any supervised or unsupervised learning

algorithms in machine learning [85]. Rather, we show that, similar to other software main-

tenance problems like duplicate bug detection [12], fine-grained incremental learning is

important for improving bug assignment accuracy, i.e., to have the classifier trained with

most recent data (or bug reports). Therefore, we only use folding to compare our work with

prior studies in automatic bug assignment where split-sample validation was used; though
4Training Data Set (TDS) used to train the classifier; see Section 3.2.1 for more details.
5Validation Data Set (VDS) used to validate the classifier; see Section 3.2.1 for more details.
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Figure 3.2: Folding techniques for classification as used by Bettenburg et al.

our best result was achieved using fine-grained incremental learning.

3.2.3 Goal-oriented Tossing Graphs

When a bug is assigned to a developer for the first time and she is unable to fix it,

the bug is assigned (tossed) to another developer. Thus a bug is tossed from one developer

to another until a developer is eventually able to fix it. Based on these tossing paths,

goal-oriented tossing graphs were proposed by Jeong et al .[76]; for the rest of the chapter,

by “tossing graph” we refer to a goal-oriented tossing graph. Tossing graphs are weighted

directed graphs such that each node represents a developer, and each directed edge from

D1 to D2 represents the fact that a bug assigned to developer D1 was tossed and eventually

fixed by developer D2. The weight of an edge between two developers is the probability of a

toss between them, based on bug tossing history. We denote a tossing event from developer

D to Dj as D ↪→ Dj . The tossing probability (also known as the transaction probability)

from developer D to Dj is defined by the following equation where k is the total number of
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developers who fixed bugs that were tossed from D:

Pr(D ↪→ Dj) =
#(D ↪→ Dj)∑k
i=1 #(D ↪→ Di)

(3.2)

Tossing paths
A→ B → C → D
A→ E → D → C
A→ B → E → D
C → E → A→ D
B → E → D → F

Developer Total Developers who fixed the bug
who tossed tosses C D F

the bug # Pr # Pr # Pr

A 4 1 0.25 3 0.75 0 0
B 3 0 0 2 0.67 1 0.33
C 2 - - 2 1.00 0 0
D 2 1 0.50 - - 1 0.50
E 4 1 0.25 2 0.50 1 0.25

Table 3.1: Tossing paths and probabilities as used by Jeong et al.
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Figure 3.3: Tossing graph built using tossing paths in Table 3.1.

In this equation, the numerator is the number m of tosses from developer D to Dj
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such that Dj fixed the bug, while the denominator is the total number of tosses from D to

any other developer Di such that Di fixed the bug. Note that if k = 0 for any developer

D, it denotes that D has no outgoing edge in the bug tossing graph. To illustrate this, in

Table 3.1 we provide sample tossing paths and show how toss probabilities are computed.

For example, developer A has tossed four bugs in all, three that were fixed by D and one

that was fixed by C, hence Pr(A ↪→ D) = 0.75, Pr(A ↪→ C) = 0.25, and Pr(A ↪→ F ) = 0.

Note that developers who did not toss any bug (e.g., F ) do not appear in the first column,

and developers who did not fix any bugs (e.g., A) do not have a probability column. In

Figure 3.3, we show the final tossing graph built using the computed tossing probabilities.

It is common in open source projects that when a bug in a module is first reported, the

developers associated with that module are included in the list of assignees by default.

The purpose of our automatic bug assignment approach is, given a bug report, to predict

developers who could be potential fixers and email them, so that human intervention is

reduced as much as possible.

Prediction accuracy. If the first developer in our prediction list matches the

actual developer who fixed the bug, we have a hit for the Top 1 developer count. Similarly,

if the second developer in our prediction list matches the actual developer who fixed the

bug, we have a hit for the Top 2 developer count. For example, if there are 100 bugs in the

VDS and for 20 of those bugs the actual developer is the first developer in our prediction

list, the prediction accuracy for Top 1 is 20%; similarly, if the actual developer is in our

Top 2 for 60 bugs, the Top 2 prediction accuracy is 60%.
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3.3 Methodology

3.3.1 Choosing Effective Classifiers and Features

In this section we discuss appropriate selection of machine learning algorithms and

feature vectors for improving the classification process.

Choosing the Right Classifier

Various approaches that use machine learning techniques for prediction or recom-

mendation purposes have found that prediction accuracy depends on the choice of classifier,

i.e., for a specific kind of a problem, a certain classifier outperforms other classifiers [170].

Previous bug classification and assignment studies [76, 8, 39, 12] only used a subset of text

classifiers and did not aim at analyzing which classifier works best for bug assignment. Our

work is the first study to consider an extensive set of classifiers which are commonly used

for text classification: Näıve Bayes Classifier, Bayesian Networks, C4.5 and two types of

SVM classifiers (Polynomial and RBF). We found that for bug assignment it is not possible

to select one classifier which is better than the rest, either for a specific project or for any

project in general. Since classifier performance is also heavily dependent on the quality

of bug reports, in general we could not propose choosing a specific classifier a priori for

a given project. Interestingly, computationally-intensive classification algorithms such as

C4.5 and SVM do not consistently outperform simpler algorithms such as Näıve Bayes and

Bayesian Networks. We provide details of our prediction accuracy using each classifier in

Section 3.4.2.
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Feature Selection

Classifier performance is heavily dependent on feature selection [170]. Prior work [8,

39, 12] has used keywords from the bug report and developer name or ID as features (at-

tributes) for the training data sets; we also include the product and component the bug

belongs to. For extracting relevant words from bug reports, we employ tf-idf, stemming,

stop-word and non-alphabetic word removal [101]. We use the Weka toolkit [165] to remove

stop words and form the word vectors for the dictionary (via the StringtoWordVector class

with tf-idf enabled).

3.3.2 Incremental Learning

Prior work [76, 12] has used inter-fold updates, i.e., the classifier and tossing

graphs are updated after each fold validation, as shown in Figure 3.4(a). With inter-fold

updates, after validating the VDS from fold n, the VDS is added to the TDS for validating

fold n + 1. However, consider the example when the TDS contains bugs 1–100 and the

VDS contains bugs 101–200. When validating bug 101, the classifier and tossing graph are

trained based on bugs 1–100, but from bug 102 onwards, the classifier and tossing graph

are not up-to-date any more because they do not incorporate the information from bug 101.

As a result, when the validation sets contain thousands of bugs, this incompleteness affects

prediction accuracy. Therefore, to achieve high accuracy, it is essential that the classifier

and tossing graphs be updated with the latest bug fix; we use a fine-grained, intra-fold

updating technique (i.e., incremental learning) for this purpose.

We now proceed to describing intra-fold updating. After the first bug in the
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Training Data Set

{X1, X2,......, Xm} {X1, X2, .... , Xm, Y1, Y2, ...., Ym}
Training Data Set

{Ym+1, Ym+2, ...., Y2m}

Validation Set

{Y1, Y2, ......, Ym}

Classifier

Validation Set

Classifier

Iteration i Iteration i+1

(a) Updates after each validation set (Bettenburg et al.)

Training Data Set

{X1, X2,......, Xm}

Validation Set

{  Y1, Y2, ......, Ym}

Validation Set

{Y1, Y2, ......, Ym }

Classifier

{X1, .... , Xm, Y1, Y2, ..., Ym−1}

Classifier

Validation Set

{Y1, Y2, ......, Ym}

Run 2

Classifier

Training Data Set

Run 1 Run m

{X1, X2, .... , Xm, Y1}

Training Data Set

Iteration i

(b) Updates after each bug (our approach)

Figure 3.4: Comparison of training and validation techniques.
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validation fold has been used for prediction and accuracy has been measured, we add it to

the TDS and re-train the classifier as shown in Figure 3.11(b). We also update the tossing

graphs by adding the tossing path of the just-validated bug. This guarantees that for each

bug in the validation fold, the classifier and the tossing graphs incorporate information

about all preceding bugs.

3.3.3 Multi-featured Tossing Graphs

Tossing graphs are built using tossing probabilities derived by analyzing bug toss-

ing histories, as explained in Section 3.2.3. Jeong et al. [76] determined potential tossees

as follows: if developer A has tossed more bugs to developer B than to developer D, in the

future, when A cannot resolve a bug, the bug will be tossed to B, i.e., tossing probabili-

ties determine tossees. However, this approach might be inaccurate in certain situations:

suppose a new bug belonging to class K1 is reported, and developer A was assigned to fix

it, but he is unable to fix it; developer B has never fixed any bug of type K1, while D has

fixed 10 bugs of type K1. The prior approach would recommend B as the tossee, although

D is more likely to resolve the bug than B. Thus, although tossing graphs reveal tossing

probabilities among developers, they should also contain information about which classes

of bugs were passed from one developer to another; we use multi-feature tossing graphs to

capture this information.

Another problem with the classifier- and tossing graph-based approaches is that

it is difficult to identify retired or inactive developers. This issue is aggravated in open

source projects: when developers work voluntarily, it is difficult to keep track of the current
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Product Component Tossing paths
P1 C1 A→ B → C
P1 C3 F → A→ B → E
P2 C5 B → A→ D → C
P1 C3 C → E → A→ D
P1 C1 A→ B → E → C
P1 C3 B → A→ F → D

Developer Total Developers who fixed the bug
bug tosses C D E

assigned # Pr # Pr # Pr

A 6 3 0.5 2 0.33 1 0.17
Developer Last Activity

(in days)
A 20
C 70
D 50
E 450

Table 3.2: Example of tossing paths, associated tossing probabilities and developer activity.

set of active developers associated with the project. Anvik et al. [8] and Jeong et al. [76]

have pointed out this problem and proposed solutions. Anvik et al. use a heuristic to filter

out developers who have contributed fewer than 9 bug resolutions in the last 3 months

of the project. Jeong et al. assume that, when within a short time span many bugs get

tossed from a developer D to others, leading to an increase in the number of outgoing

edges in the tossing graph from D’s node, D is a potentially retired developer. They

suggest that this information can be used in real-world scenarios by managers to identify

potentially inactive developers. Therefore, in their automatic bug assignment approach

they still permit assignment of bugs to inactive developers, which increases the length of

the predicted tossing paths. In contrast, we restrict potential assignees to active developers

only, and do so with a minimum number of tosses.

The tossing graphs we build have additional labels compared to Jeong et al.: for
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each bug that contributes to an edge between two developers, we attach the bug class

(product and component)6 to that edge; moreover, for each developer in the tossing graph,

we maintain an activity count, i.e., the difference between the date of the bug being validated

and the date of the last activity of that developer.

A

{P1,C3}

0.33

50 Days

0.17
{P1,C3}

70 Days

450 Days
{P1,C1,
P2,C4}

0.5

D C

E

Figure 3.5: Multi-feature tossing graph (partial) derived from data in Table 3.2.

Building Multi-feature Tossing Graphs

As discussed earlier in Section 3.3.3, tossing probabilities are a good start toward

indicating potential bug fixers, but they might not be appropriate at all times. Therefore,

the tossing graphs we generate have three labels in addition to the tossing probability:

bug product and bug component on each edge, and number of days since a developer’s

last activity on each node. For example, consider three bugs that have been tossed from

D1 to D2 and belong to three different product-component sets: {P1, C1}, {P1, C3}, and

{P2, C5}. Therefore, in our tossing graph, the product-component set for the edge between

D1 and D2 is {{P1, C1}, {P1, C3}, {P2, C5}}. Maintaining these additional attributes is also

helpful when bugs are re-opened. Both developer expertise and tossing histories change
6Products are smaller projects within a large project. Components are sub-modules in a product. For

example, Firefox is a product in Mozilla and Bookmarks is a component of Firefox.
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over time, hence it is important to identify the last fixer for a bug and a potential tossee

after the bug has been re-opened.

We now present three examples that demonstrate our approach and show the im-

portance of multi-feature tossing graphs. The examples are based on the tossing paths, the

product–component the bug belongs to, and the developer activity, as shown in Table 3.2.

Suppose that at some point in our recommendation process for a specific bug, the classifier

returns A as the best developer for fixing the bug. However, if A is unable to resolve it, we

need to use the tossing graph to find the next developer. We will present three examples

to illustrate which neighbor of A to choose, and how the selection depends on factors like

bug source and developer activity, in addition to tossing probability. For the purpose of

these examples, we just show a part of the tossing graph built from the tossing paths shown

in Table 3.2; we show the node for developer A and its neighbors in the tossing graph in

Figure 3.5, as the tossee selection is dependent on these nodes alone.

Example I. Suppose we encounter a new bug B1 belonging to product P1 and

component C5, and the classifier returns A as the best developer for fixing the bug. If A is

unable to fix it, by considering the tossing probability and product–component match, we

conclude that it should be tossed to C.

Example II. Consider a bug B2 belonging to product P1 and component C3. If

A is unable to fix it, although C has a higher transaction probability than D, because D

has fixed bugs earlier from product P1 and component C3, he is more likely to fix it than

C. Hence in this case the bug gets tossed from A to D.

Example III. Based on the last active count for E in Figure 3.5, i.e., 450 days,
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it is likely that E is a retired developer. In our approach, if a developer has been inactive

for more than 100 days,7 we choose the next potential neighbor (tossee) from the reference

node A. For example, consider bug B3 which belongs to product P1 and component C3,

which has been assigned to A and we need to find a potential tossee when A is unable to

resolve it. We should never choose E as a tossee as he is a potential retired developer and

hence, in this particular case, we choose C as the next tossee. We also use activity counts

to prune inactive developers from classifier recommendations. For example, if the classifier

returns n recommendations and we find that the ith developer is probably retired, we do

not select him, and move on to the (i+ 1)st developer.

Ranking Function

As explained with examples in Section 3.3.3, the selection of a tossee depends on

multiple factors. We thus use a ranking function to rank the tossees and recommend a

potential bug-fixer. We first show an example of our developer prediction technique for a

real bug from Mozilla and then present the ranking function we use for prediction.

Example (Mozilla bug 254967). For this particular bug, the first five de-

velopers predicted by the Näıve Bayes classifier are {bugzilla, fredbezies, myk, tanstaafl,

ben.bucksch}. However, since bryner is the developer who actually fixed the bug, our

classifier-only prediction is inaccurate in this case. If we use the tossing graphs in addition

to the classifier, we select the most likely tossee for bugzilla, the first developer in the clas-

sifier ranked list. In Figure 3.6, we present the node for bugzilla and its neighbors.8 If we
7Choosing 100 days as the threshold was based on Anvik et al. [8]’s observation that developers that have

been inactive for three months or more are potentially retired.
8For clarity, we only present the nodes relevant to this example, and the labels at the point of validating
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rank the outgoing edges of bugzilla based on tossing probability alone, the bug should be

tossed to developer ddahl. Though bryner has lower probability, he has committed patches

to the product “Firefox” and component “General” that bug 254967 belong to. Therefore,

our algorithm will choose bryner as the potential developer over ddahl, and our prediction

matches the actual bug fixer. Our ranking function also takes into account developer activ-

ity; in this example, however, both developers ddahl and bryner are active, hence comparing

their activities is not required. To conclude, our ranking function increases prediction ac-

curacy while reducing tossing lengths; the actual tossing length for this particular Mozilla

bug was 6, and our technique reduces it to 2.

We now describe our algorithm for ranking developers. Similar to Jeong et al., we

first use the classifier to predict a set of developers named CP (Classifier Predicted). Using

the last-activity information, we remove all developers who have not been active for the

past 100 days from CP. We then sort the developers in CP using the fix counts from the

developer profile (as described in Section 3.3.6).

Suppose the CP is {D1, D2, D3, . . . , Dj}. For each Di in the sorted CP, we rank

its tossees Tk (outgoing edges in the tossing graph) using the following ranking function:

Rank (Tk) = Pr(Di ↪→ Tk)+

MatchedProduct(Tk) +

MatchedComponent(Tk) +

LastActivity(Tk)

this bug; due to incremental learning, label values will change over time.
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The tossing probability, Pr(Di ↪→ Tk), is computed using equation 3.2 (Sec-

tion 3.2). The function MatchedProduct(Tk) returns 1 if the product the bug belongs to ex-

ists in developer Tk’s profile, and 0 otherwise. Similarly, the functionMatchedComponent(Tk)

returns 1 if the component the bug belongs to exists in developer Tk’s profile. Note that the

MatchedComponent(Tk) attribute is computed only when MatchedProduct(Tk) returns 1.

The LastActivity function returns 1 if Tk’s last activity was in the last 100 days from the

date the bug was reported. As a result, 0 < Rank(Tk) ≤ 4. We then sort the tossees Tk

by rank, choose the developer Ti with highest rank and add it to the new set of potential

developers, named ND. Thus after selecting Ti, where i = 1, 2, . . . , j, the set ND becomes

{D1, T1, D2, T2, D3, T3, . . . , Dj , Tj}. When measuring our prediction accuracy, we use the

first 5 developers in ND.

If two potential tossees Ti and Tj have the same rank, and both are active de-

velopers, and both have the same tossing probabilities for bug B (belonging to product

P and component C), we use developer profiles to further rank them. There can be two

cases in this tie: (1) both Ti and Tj ’s profiles contain {P,C}, or (2) there is no match with

either P or C. For the first case, consider the example in Table 3.3: suppose a new bug

B belongs to {P1, C1}. Assume Ti and Tj are the two potential tossees from developer D

(where D has been predicted by the classifier) and suppose both Ti and Tj have the same

tossing probabilities from D. From developer profiles, we find that Tj has fixed more bugs

for {P1, C1} than Ti, hence we choose Tj (case 1). If the developers have the same fix count,

or neither has P and/or C in their profile (case 2), we randomly choose one.
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bugzilla

{Firefox,General}

0.437 0.196

ddahl bryner38 days12 days

{Firefox,Bookmarks} {Firefox,Bookmarks}

Figure 3.6: Actual multi-feature tossing graph extracted from Mozilla.

Developer ID Product-Component Fix count
Ti {P1, C1} 3

{P1, C7} 18
{P9, C6} 7

Tj {P1, C1} 13
{P4, C6} 11

Table 3.3: Sample developer profiles: developer IDs and number of bugs they fixed in each
product–component pair.

3.3.4 Ablative Analysis for Tossing Graph Attributes

As explained in Section 3.3.6, our ranking function for tossing graphs contains

additional attributes compared to the original tossing graphs by Jeong et al. Therefore, we

were interested to evaluate the importance of each attribute; to measure this, we performed

another ablative analysis. We choose only two attributes out of three (product, component

and developer activity) at a time and compute the decrease in prediction accuracy in the

absence of the other attribute. For example, if we want to measure the significance of

the “developer activity” attribute, we use only product and component attributes in our

ranking function described in Section 3.3.6 and compute the decrease in prediction accuracy.

In Section 3.4.5 we discuss the results of our ablative analysis and argue the importance of
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the attributes we propose.

3.3.5 Accurate Yet Efficient Classification

One of the primary disadvantages of fine-grained incremental learning is that it

is time consuming [127, 132, 154]. Previous studies which used fine-grained incremental

learning for other purposes [89] found that using a part of the bug repository history for

classification might yield comparable and stable results to using the entire bug history.

Similarly, we intended to find how many past bug reports we need to train the classifier

on in order to achieve a prediction accuracy comparable to the highest prediction accuracy

attained when using fold 1–10 as the TDS and fold 11 as the VDS.

We now present the procedure we used for finding how much history is enough to

yield high accuracy. We first built the tossing graphs using the TDS until fold 10; building

tossing graphs and using them to rank developers is not a time consuming task, hence in

our approach tossing graphs cover the entire TDS. We then incrementally started using

sets of 5,000 bug reports from fold 10 downwards, in descending chronological order, as our

TDS for the classifier, and measured our prediction accuracy for bugs in fold 11 (VDS); we

continued this process until addition of bug reports did not improve the prediction accuracy

any more, implying stabilization. Note that by this method our VDS remains constant. We

present the results of our optimization in Section 3.4.7.
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Update classifier and tossing graphs
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(c) Incremental learning and multi-feature

tossing graphs (our approach)

Figure 3.7: Comparison of bug assignment techniques.
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3.3.6 Implementation

In Figure 3.7 we compare our approach to previous techniques. Initial work in this

area (Figure 3.7(a)) used classifiers only [8, 39, 12, 36]; more recent work by Jeong et al. [76]

(Figure 3.7(b)) coupled classifiers with tossing graphs. Our approach (Figure 3.7(c)) adds

fine-grained incremental learning and multi-feature tossing graphs. Our algorithm consists

of four stages, as labeled in the figure: (1) initial classifier training and building the tossing

graphs, (2) predicting potential developers, using the classifier and tossing graphs, (3)

measuring prediction accuracy, (4) updating the training sets using the bugs which have

been already validated, re-running the classifier and updating the tossing graphs. We iterate

these four steps until all bugs have been validated.

Developer Profiles

Developer ID Product-Component Fix count
D1 {P1, C2} 3

{P1, C7} 18
{P9, C6} 7

Table 3.4: Sample developer profile.

We maintain a list of all developers and their history of bug fixes. Each developer

D has a list of product-component pairs {P,C} and their absolute count attached to his or

her profile. A sample developer profile is shown in Table 3.4, e.g., developer D1 has fixed 3

bugs associated with product P1 and component C2. This information is useful beyond bug

assignments; for example, while choosing moderators for a specific product or component

it is a common practice to refer to the developer performance and familiarity with that
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product or component.

Classification

Given a new bug report, the classifier produces a set of potential developers who

could fix the bug. We describe the classification process in the remainder of this subsection.

Choosing fixed bug reports. We use the same heuristics as Anvik et al. [8]

for obtaining fixed bug reports from all bug reports in Bugzilla. First, we extract all bugs

marked as “verified” or “resolved”; next, we remove all bugs marked as “duplicate” or

“works-for-me,” which leaves us with the set containing fixed bugs only.

Accumulating training data. Prior work [8, 39, 12] has used keywords from the

bug report and developer name or ID as attributes for the training data sets; we also include

the product and component the bug belongs to. For extracting relevant words from bug

reports, we employ tf-idf, stemming, stop-word and non-alphabetic word removal [101].

Filtering developers for classifier training. Anvik et al. refine the set of

training reports by using several heuristics. For example, they do not consider developers

who fixed a small number of bugs, which helps remove noise from the TDS. Although this

is an effective way to filter non-experts from the training data and improve accuracy, in

our approach filtering is unnecessary: the ranking function is designed such that, if there

are two developers A and B who have fixed bugs of the same class K, but the number of

K-type bugs A has fixed is greater than the number of K-type bugs B has fixed, a K-type

bug will be assigned to A.
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Multi-feature Tossing Graphs

With the training data and classifier at hand, we proceed to constructing tossing

graphs as explained in Section 3.3.3. We use the same bug reports used for classification to

build the tossing graphs.

Filtering developers for building tossing graphs. We do not prune the

tossing graphs based on a pre-defined minimum support (frequency of contribution) for a

developer, or the minimum number of tosses between two developers. Jeong et al. [76]

discuss the significance of removing developers who fixed less than 10 bugs and pruning

edges between developers that have less than 15% transaction probability. Since their

approach uses the probability of tossing alone to rank neighboring developers, they need

the minimum support values to prune the graph. In contrast, the multiple features in our

tossing graphs coupled with the ranking function (as explained in the Section 3.3.6) obviate

the need for pruning.

Predicting Developers

For each bug, we predict potential developers using two methods: (1) using the

classifier alone, to demonstrate the advantages of incremental learning, and (2) using both

the classifier and tossing graphs, to show the significance of multi-feature tossing graphs.

When using the classifier alone, the input consists of bug keywords, and the classifier returns

a list of developers ranked by relevance; we select the top five from this list. When using the

classifier in conjunction with tossing graphs, we select the top three developers from this

list, then for developers ranked 1 and 2 we use the tossing graph to recommend a potential
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tossee, similar to Jeong et al. For predicting potential tossees based on the tossing graph,

our tossee ranking function takes into account multiple factors, in addition to the tossing

probability as proposed by Jeong et al. In particular, our ranking function is also dependent

on (1) the product and component of the bug, and (2) the last activity of a developer, to

filter retired developers. Thus our final list of predicted developers contains five developer

id’s in both methods (classifier alone and classifier + tossing graph).

Folding

After predicting developers, similar to the Bettenburg et al.’s folding technique [12],

we iterate the training and validation for all folds. However, since our classifier and toss-

ing graph updates are already performed during validation, we do not have to update our

training data sets after each fold validation. To maintain consistency in comparing our

prediction accuracies with previous approaches, we report the average prediction accuracy

over each fold.

3.4 Results

3.4.1 Experimental Setup

We used Mozilla and Eclipse bugs to measure the accuracy of our proposed al-

gorithm. We analyzed the entire life span of both applications. For Mozilla, our data

set ranges from bug number 37 to 549,999 (May 1998 to March 2010). For Eclipse, we

considered bugs numbers from 1 to 306,296 (October 2001 to March 2010). Mozilla and

Eclipse bug reports have been found to be of high quality [76], which helps reduce noise
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when training the classifiers. We divided our bug data sets into 11 folds and executed 10

iterations to cover all the folds.

We used the bug reports to collect four kinds of data:

1. Keywords: we collect keywords from the bug title, bug description and comments in

the bug report.

2. Bug source: we retrieve the product and component the bug has been filed under from

the bug report.

3. Temporal information: we collect information about when the bug has been reported

and when it has been been fixed.

4. Developers assigned: we collect the list of developer IDs assigned to the bug from the

activity page of the bug and the bug routing sequence.

3.4.2 Prediction Accuracy

In Tables 3.5 and 3.6 we show the results for predicting potential developers who

can fix a bug for Mozilla and Eclipse using five classifiers: Näıve Bayes, Bayesian Networks,

C4.5, and SVM using Polynomial and RBF kernel functions. In our experiments, we used

the classifier implementations in Weka for the first three classifiers [165] and WLSVM for

SVM [45].9

Classifier alone. To demonstrate the advantage of our fine-grained, incremen-

tal learning approach, we measure the prediction accuracy of the classifier alone; column
9The details of the parameters used for the classifiers in the experiments can be found at: http://www.

cs.ucr.edu/~neamtiu/bugassignment-params/
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“ML only” contains the classifier-only average prediction accuracy rate. We found that, for

Eclipse and Mozilla, our approach increases accuracy by 8.91 percentage points on average

compared to the best previously-reported, no-incremental learning approach, by Anvik et

al. [8]. This confirms that incremental learning is instrumental for achieving a high predic-

tion accuracy. Anvik et al. report that their initial investigation of incremental learning

did not yield highly accurate predictions, though no details are provided. Note that we

use different data sets (their experiments are based on 8,655 reports for Eclipse and 9,752

for Firefox, while we use 306,297 reports for Eclipse and 549,962 reports for Mozilla) and

additional attributes for training and validation.

Classifier + tossing graphs. Columns “ML+Tossing Graphs” of Tables 3.5

and 3.6 contain the average accurate predictions for each fold (Top 2 to Top 5 developers)

when using both the classifier and the tossing graph; the Top 1 developer is predicted

using the classifier only. Consider row 2, which contains prediction accuracy results for

Top 2 in Mozilla using the Näıve Bayes classifier: column 4 (value 39.14) represents the

percentage of correct predictions for fold 1; column 5 (value 44.59) represents the percentage

of correct predictions for folds 1 and 2; column 14 (value 54.49) represents the average

value for all iterations across all folds. Column 15 represents the percentage improvement

of prediction accuracy obtained by our technique when compared to using tossing graphs

with tossing probabilities only. Our best average accuracy is achieved using Näıve Bayes

(77.87% for Mozilla and 77.43% for Eclipse). We found that this prediction accuracy is

higher than the prediction accuracy we obtained in our earlier work [17] where we used

Näıve Bayes and Bayesian Networks only. When compared to prior work [76] (where Näıve
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Bayes and Bayesian Networks were used as ML algorithms and tossing probabilities alone

were used in the tossing graphs) our technique improved prediction accuracy by up to

11.02 percentage points. However, when measuring across the average of all ten folds, our

model achieved highest prediction accuracy of 77.87% for Mozilla using Näıve Bayes and

75.89% for Eclipse using Bayesian Networks. The last column shows the percentage increase

in prediction accuracy from using single-attribute tossing graphs with tossing probability

alone [76] compared to our approach in which we used a ranking function based on the

multi-attribute tossing graphs we proposed.

Classifier selection. In Section 3.3.1 we discussed that one of the objectives of

using a broad range of classifiers for evaluating our framework is to analyze if a particu-

lar classifier is best suited for the bug assignment problem. Our results in Tables 5 and

6 reveal that the answer is complex. Generally, Näıve Bayes works best for early VDS

folds (when there are fewer data) and when considering Top 4 or Top 5 accuracies. The

polynomial-kernel SVM performs fairly poorly. The other three are comparable, without

an obvious pattern.

Our results are consistent with the standard statistical learning theory of bias-

variance [66]. In particular, with fewer data (or more noise in the data) better results are

achieved by using a less flexible classifier (one with fewer parameters and more bias). This

supports the performance of Näıve Bayes: it does better for small sample sizes and in case

where the testing metric does not match the training metric as well (Top 5, for instance)

which looks like noisier data. Additionally, if the bias is too far from the true answer, the

method will not work well. The polynomial-kernel SVM probably has such a mismatch: its
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bias is too far from the correct bug triage classifier. In particular, it is a global classifier

in that all training data affect the classifications for all inputs. By contrast, C4.5 and

RBF SVM both are local classifiers: only training data near the testing point have a large

influence on the resulting classification. This suggests that local classification methods will

do best on bug assignment.

Among the more flexible (less biased) local classifiers (Bayesian networks, C4.5,

and RBF SVM), there is not a clear winner—all seem equally well suited for bug assignment.

On any particular task, one will do better than the others, but a systematic prediction about

other tasks cannot be made from these experiments: much will depend on the amount of

data, and the noise present. All of these methods have “regularization parameters” that

can adjust the amount of bias. Picking a suitable value based on the amount of data and

noise is more important for achieving good results than the exact classifier used.

3.4.3 Tossing Length Reduction

We compute the original tossing path lengths for “fixed” bugs in Mozilla and

Eclipse, and present them in Figure 3.8; we observe that most bugs have tossing length

less than 13 for both applications. Note that tossing length is zero if the first assigned

developer is able to resolve the bug. Ideally, a bug assignment model should be able to

recommend bug fixers such that tossing lengths are zero. However, this is unlikely to

happen in practice due to the unique nature of bugs. Though Jeong et al. measured tossing

lengths for both “assigned” and “verified” bugs, we ignore “assigned” bugs because they

are still open, hence we do not have ground truth (we do not know the final tossing length
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yet). In Figure 3.9, we present the average reduced tossing lengths of the bugs for which

we could correctly predict the developer. We find that the predicted tossing lengths are

reduced significantly, especially for bugs which have original tossing lengths less than 13.

Our approach reports reductions in tossing lengths by up to 86.67% in Mozilla and 83.28%

in Eclipse. For correctly-predicted bugs with original tossing length less than 13, prior

work [76] has reduced tossing path lengths to 2–4 tosses, while our approach reduces them

to an average of 1.5 tosses for Mozilla and 1.8 tosses for Eclipse, hence multi-feature tossing

graphs prove to be very effective.

3.4.4 Filtering Noise in Bug Reports

We found that when training sets comprise bugs with resolution “verified” or “re-

solved” and arbitrary status, the noise is much higher than when considering bugs with

resolution “verified” or “resolved” and status “fixed”. In fact, we found that, when con-

sidering arbitrary-status bugs, the accuracy is on average 23% lower than the accuracy

attained when considering fixed-status bugs only. Jeong et al. considered all bugs with

resolution “verified” and arbitrary-status for their training and validation purposes. They

found that tossing graphs are noisy, hence they chose to prune developers with support less

than 10 and edges with transaction probability less than 15%.

Our analysis suggests that bugs whose status changes from “new” or “open” to

“fixed” are actual bugs which have been resolved, even though various other kinds of bugs,

such as “invalid,” “works-for-me,” “wontfix,” “incomplete” or “duplicate” may be catego-

rized as “verified” or “resolved.” We conjecture that developers who submit patches are
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Figure 3.8: Original tossing length distribution for “fixed” bugs.
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Figure 3.9: Average reduction in tossing lengths for correctly predicted bugs when using
ML + Tossing Graphs (using both classifiers).

more competent than developers who only verify the validity of a bug and mark them

as “invalid” or developers who find a temporary solution and change the bug status to

“works-for-me.” Anvik et al. made a similar distinction between message repliers and con-

tributors/maintainers; they found that only a subset of those replying to bug messages are

actually submitting patches and contributing to the source code, hence they only retain the
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contributing repliers for their TDS.

3.4.5 Importance of Individual Tossing Graph Attributes

Since our ranking function for tossing graphs contains additional attributes com-

pared to the original tossing graphs by Jeong et al., we were interested in evaluating the

importance of each attribute using ablative analysis as described in Section 3.3.4. There-

fore, we compute, for each fold, the reduction in accuracy caused by removing one attribute

from the ranking function and keeping the other two. In Figure 3.10 we show the minimum

(bottom black bar), maximum (top black bar) and average (red bar) across all folds. The

decrease in prediction accuracy shows that the removal of product and developer activity

attributes affects the prediction accuracy the most. These accuracy reductions underline

the importance of using all attributes in the ranking function, and more generally, the ad-

vantage of the richer feature vectors our approach relies on. Note that removing developer

activity affects prediction accuracy in Mozilla more significantly than in Eclipse. Analyzing

the significance of each attribute in our ranking function for individual projects, i.e., build

a ranking function per project, is beyond the scope of this chapter.

3.4.6 Importance of Incremental Learning

To assess the significance of incremental learning in our technique, we performed

two sets of experiments. We took our best results, i.e., using Näıve Bayes classifier, with

tossing graphs, product–component and incremental learning, and then unilaterally varied
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Project Selection Average Prediction Accuracy (%)
With intra-
and inter-fold
updates (best)

Without intra-
fold updates

Without inter-
fold updates

Top 1 27.67 13.53 (-14.15) 7.86 (-19.82)
Top 2 54.49 26.59 (-27.90) 12.54 (-41.95)

Mozilla Top 3 65.09 47.20 (-17.88) 28.61 (-36.48)
Top 4 71.82 53.24 (-18.60) 36.63 (-35.2)
Top 5 77.87 62.22 (-15.66) 43.86 (-34.02)
Top 1 32.36 8.64 (-23.73) 11.43 (-20.94)
Top 2 43.15 19.18 (-23.97) 16.02 (-27.13)

Eclipse Top 3 59.30 32.82 (-26.48) 27.15 (-32.15)
Top 4 68.37 44.30 (-24.07) 32.49 (-35.88)
Top 5 77.43 58.33 (-19.10) 39.47 (-37.96)

Table 3.7: Impact of inter- and intra-folding on prediction accuracy using the Näıve Bayes
classifier.

the learning procedure.10 The best-result data has been shown in Tables 3.5 and 3.6 but

for ease of comparison we report the same data in shown column 3 of Table 3.7.

Intra-fold updates. To evaluate the impact of disabling of intra-fold updates we

also trained our model using folds 1 to (N−1) and we used fold N for prediction. The results

of the average prediction accuracy are presented in column 4 of Table 3.7. For example, our

results show that for Top 1 developers in Mozilla, the average prediction accuracy across

10 folds is 13.53%, a decrease of 14.15 percentage points when compared to the incremental

learning (inter- and intra-fold updates) technique shown in column 3.

Inter-fold updates. To evaluate the importance of inter-fold updates for each

fold, we first trained our model using the first 80% of the bug reports in that fold only. Next,

we used the remaining 20% of the bug reports in that fold only for measuring prediction
10We chose Näıve Bayes since the average prediction accuracy was highest for this classifier compared

to other classifiers, hence, consistent with the standard machine learning practice of ablative analysis, we
varied incremental learning to quantify its impact.
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accuracy. Note that in this case, the bug reports from folds 1 to N -1 are not added to fold

N while training the classifier. The average prediction accuracy is presented in column 5 of

Table 3.7. For example, our results show that for Top 1 developers in Mozilla, the average

prediction accuracy across 10 folds is 7.86%, a decrease of 19.82% when compared to the

incremental learning (inter- and intra-fold updates) technique shown in column 3.

Conclusions. The results in Table 3.7 suggest there is a significant decrease in

prediction accuracy (up to 42%) when incremental learning (inter- and intra-fold updates)

is removed from our algorithm. This reduction in prediction accuracy suggests that in-

deed incremental learning is instrumental to achieving higher prediction accuracy for bug

assignment: inter-and intra-folding lead to tossing graphs with highly accurate transaction

probabilities which, helps improve our prediction accuracy. Note that incremental learning

(or folding) is not a contribution of our work; incremental learning is a standard technique

to improve the prediction accuracy in any supervised or unsupervised learning algorithms

in machine learning [85]. Rather, these experiments were performed to demonstrate that

in comparison to prior work, where split-sample validation was used, automatic bug assign-

ment can benefit significantly from incremental learning.

3.4.7 Accurate Yet Efficient Classification

One of the primary disadvantages of fine-grained incremental learning is that it

is very time consuming. As described in Section 3.3.5, we performed a study to find how

many past bug reports we need to train the classifier to achieve approximately similar

prediction accuracy when compared to the highest prediction accuracy attained when using
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(b) Eclipse

Figure 3.10: Impact of individual ranking function attributes on prediction accuracy.

90



www.manaraa.com

folds 1–10 as the TDS and fold 11 as the VDS. We used the Näıve Bayes classifier as our

ML algorithm in this case. We present our results in Figure 3.11. We found that Mozilla

required approximately 14% and Eclipse required about 26% of all bug reports (in reverse

chronological order, i.e., most recent bugs) to achieve prediction accuracies greater than

80%—within 5 percentage points of the best results of our original experiments where we

used the complete bug history to train our classifier. Therefore, a practical way to reduce

the computational effort associated with learning, yet maintain high prediction accuracy, is

to prune the bug report set and only use a recent subset (e.g., the most recent 14% to 26%

of bug reports, depending on the project).

Computational effort. The intra-fold updates used in our approach are more

computationally-intensive than inter-fold updates. However, for practical purposes this is

not a concern because very few bugs get fixed the day they are reported. Before we use

the algorithm to predict developers, we train it with all fixed bug reports in the history;

when a new bug gets fixed, the TDS needs to be updated and we need to re-train the

classifier. However, while about 100 bugs are reported every day for large projects like

Mozilla and Eclipse, less than 1 bug gets fixed every day, on average [76]. Since we use

fixed bug reports only, if we update the TDS overnight with the new fixed bug reports and

retrain the classifier, we can still achieve high prediction accuracies.

3.5 Threats To Validity

We now present possible threats to the validity of this chapter’s work.
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Figure 3.11: Change in prediction accuracy when using subsets of bug reports using Näıve
Bayes classifier.

3.5.1 Internal Validity

In our study we collected bug reports from Bugzilla for both Eclipse and Mozilla.

Bug reports can have various status at a given point in time: “unconfirmed,” “new,” “as-

signed,” “reopened,” “resolved,” “verified,” and “closed”. A bug which has status resolution

status as “fixed” can be either “verified” or “closed” at a given point. For our training and

validation purposes, we look at bugs which have the resolution status as fixed irrespective

of whether it is “verified” or “closed”. We filter our data set to fixed bugs only for the

following reasons: (1) for bugs which are unconfirmed, it is not possible to say if they are

indeed bugs, (2) for new bugs it is not known who the developer will be who will fix that

bug and hence these bugs cannot be used for training a supervised classifier where the

end-result knowledge is necessary, (3) reopened bugs are similar to new bugs and hence are

not a part of our training/validation, (4) resolved bugs are those for which a resolution has

been provided by a developer but is still in the review process which implies that the bug

might be re-assigned (or tossed) if the resolution is not satisfactory. For accurate supervised
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learning, we need to ensure that the training set includes the correct expertise of the devel-

opers. One potential threat to validity in our study is that a bug B which has been fixed

and closed can be reopened at a later time. In that case developer D who earlier resolved

bug B might not resolve the issues with reopening the bug again and might affect our clas-

sification results. However, it is impossible to predict what percentage of currently-fixed

bugs will be reopened in future and quantify the effects of bug reopening on our results.

Another potential threats to validity in our study is not differentiating between bugs and

enhancement requests.

3.5.2 External Validity

Generalization to other systems. The high quality of bug reports found in

Mozilla and Eclipse [76] facilitates the use of classification methods. However, we cannot

claim that our findings generalize to bug databases for other projects. Additionally, we

have validated our approach on open source projects only, but commercial software might

have different assignment policies and we might require considering different attribute sets.

Small projects. We used two large and widely-used open source projects for our

experiments, Mozilla and Eclipse. Both projects have multiple products and components,

hence we could use this information as attributes for our classifier and labels in our tossing

graphs. For comparatively smaller projects which do not have products or components,

the lack of product-component labels on edges would reduce accuracy. Additionally, for

smaller projects the 90-days heuristic we use for pruning inactive developers might have to

change. In the future when we analyze smaller projects, we plan to empirically study the
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average lifetime of a developer for the project to determine inactive and active developers.

Nevertheless, fine-grained incremental learning and pruning inactive developers would still

be beneficial.

3.5.3 Construct Validity

For the projects we used, we did not differentiate between various roles (e.g.,

developers, triagers, managers) contributors serve in the project. Our approach neither

divides contributors according to the roles they play in the community, nor ranks them

higher based on their familiarity with the source code. In the future, we plan to include

developer’s source code expertise in the future to further improve our ranking function.

Additionally, it is not possible to find out in our framework if the first developer who was

assigned the bug was a default assignee or assigned by the triager explicitly for any projects.

However, for the projects we chose—Mozilla and Eclipse—developers were cc’ed by default

when they are responsible for a specific product or component, but they are not assigned

the bug by default for fixing it.

3.5.4 Content Validity

Information retrieval and learning tools. We used Weka for extracting rel-

evant keywords after stop-word removal and tf-idf as explained in Section 3.3.6. We also

used the built-in classifiers of Weka and LibSVM for learning our model. Hence, another

potential threat to validity is error in these tools or how changes in implementation of these

classifiers might affect our results.
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Developer identity. The assignee information in Bugzilla does not contain the

domain info of the email address for a developer. Therefore, we could not differentiate

between users with same email id but different domains. For instance, in our technique,

bugzilla@alice.com, and bugzilla@bob.com will be in the same bucket as bugzilla@standard8.plus.com.

This might potentially lead to inaccurate predictions and decrease the prediction accuracy

of our model.

Load balancing. Our technique does not consider load balancing while assigning

bugs to developers. This is a potential threat to validity in the following sense: if our ap-

proach predicts that developer D is the best match to fix a bug, he/she might be overloaded,

so assigning them another bug might increase the bug-fix time.

3.6 Contribution Summary

In summary, the main contributions of this chapter are:

• We employ a comprehensive set of machine learning tools and a probabilistic graph-

based model (bug tossing graphs) that lead to highly-accurate predictions, and lay

the foundation for the next generation of machine learning-based bug assignment.

• Our work is the first to examine the impact of multiple machine learning dimen-

sions (classifiers, attributes, and training history) along with bug tossing graphs on

prediction accuracy in bug assignment.

• We validate our approach on Mozilla and Eclipse, covering 856,259 bug reports and

21 cumulative years of development. We demonstrate that our techniques can achieve
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up to 86.09% prediction accuracy in bug assignment and significantly reduce tossing

path lengths.

• We show that for our data sets the Näıve Bayes classifier coupled with product–

component features, tossing graphs and incremental learning performs best. Next, we

perform an ablative analysis by unilaterally varying classifiers, features, and learning

model to show their relative importance of on bug assignment accuracy. Finally, we

propose optimization techniques that achieve high prediction accuracy while reducing

training and prediction time.

3.7 Conclusions

Machine learning and tossing graphs have proved to be promising for automating

bug assignment. In this chapter we lay the foundation for future work that uses machine

learning techniques to improve automatic bug assignment by examining the impact of mul-

tiple machine learning dimensions—learning strategy, attributes, classifiers—on assignment

accuracy.

We used a broad range of text classifiers and found that, unlike many problems

which use specific machine learning algorithms, we could not select a specific classifier

for the bug assignment problem. We show that, for bug assignment, computationally-

intensive classification algorithms such as C4.5 and SVM do not always perform better than

their simple counterparts such as Näıve Bayes and Bayesian Networks. We performed an

ablative analysis to measure the relative importance of various software process attributes

96



www.manaraa.com

in prediction accuracy. Our study indicates that to avoid the time-consuming classification

process we can use a subset of the bug reports from the bug databases and yet achieve

stable-high prediction accuracy.
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Chapter 4

Effects of Programming Language

on Software Development and

Maintenance

Anecdotal evidence suggests that the choice of programming language before de-

veloping a software project is primarily determined by three factors: performance issues,

developer expertise and task difficulty. In this chapter we argue that the choice of program-

ming language affects the quality of software produced using one language over another.

Existing studies that analyze the impact of choice of programming language on software

quality suffer from several deficiencies with respect to methodology and the applications

they consider. For example, they consider applications built by different teams in differ-

ent languages, hence fail to control for developer competence, or they consider small-sized,

infrequently-used, short-lived projects. We design a novel methodology which controls for
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development process and developer competence, and quantifies how the choice of program-

ming language impacts software quality and developer productivity. We conduct a study

and statistical analysis on a set of long-lived, widely-used, open source projects—Firefox,

Blender, VLC, and MySQL. The key novelties of our study are: (1) we only consider projects

which have considerable portions of development in two languages, C and C++, and (2)

a majority of developers in these projects contribute to both C and C++ code bases. We

found that using C++ instead of C results in improved software quality and reduced main-

tenance effort, and that code bases are shifting from C to C++. Our methodology lays a

solid foundation for future studies on comparative advantages of particular programming

languages.

4.1 Introduction

We are currently witnessing a shift in the language choice for new applications:

with the advent of Web 2.0, dynamic, high-level languages are gaining more and more trac-

tion [40, 155]; these languages raise the level of abstraction, promising faster development

of higher-quality software. However, the lack of static checking and the lack of mature

analysis and verification tools makes software written in these languages potentially more

prone to error and harder to maintain, so we need a way to quantitatively assess whether

they indeed improve development and maintenance.

To that end, in this chapter we present a methodology for assessing the impact of

The work presented in this chapter have been published in the proceedings of the 2011 IEEE International
Conference on Software Engineering [14].
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programming language on development and maintenance, a long-standing challenge [108].

We first introduce an approach for attributing software quality and ease of maintenance to

a particular programing language, then exemplify the approach by comparing C and C++.

C++ was designed extending C to include features—object-oriented constructs, overloading,

polymorphism, exception handling, stronger typing—aimed at faster construction of less

error-prone software. To understand whether using C++ instead of C leads to better, easier

to maintain software, we answer several questions directly related to software construction

and maintenance: Are programs written in C++ easier to understand and maintain than

programs written in C? Are C++ programs less prone to bugs than C programs? Are

seasoned developers, with equal expertise in C and C++, more productive in C++ than in

C? Are code bases shifting from C to C++?

We answer these questions via an empirical study; we are now in a good position

to conduct such a study because both C and C++ are mature, and have been used in large

projects for a time long enough to study the effects of using one language versus the other.

Prior efforts on analyzing the impact of choice of programming language suffer from

one or more deficiencies with respect to the applications they consider and the manner they

conduct their studies: (1) they analyze applications written in a combination of two lan-

guages but these applications are small-sized and have short lifespans, or (2) they consider

software built entirely using a single language, rather than performing a cross-language eval-

uation, or (3) they examine applications that are written in different languages by different

teams. Using such methodologies often results in analyses which cannot be generalized to

large real-world applications. We aimed to address all these shortcomings.
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Figure 4.1: Hypergraph extraction for assessing the effects of programming language on
software evolution.

First, we consider four large, long-lived, open source applications: Mozilla Firefox,

VLC Media Player, Blender Animation Software and MySQL; our analysis covers 216 official

releases and a combined 40 years of evolution. All these applications are mature, stable,

have large code bases in both C and C++, and have large user bases; their long histories help

us understand issues that appear in the evolution of multi-developer widely-used software.

Second, we ensure the uniformity of software development process when comparing

C and C++ code. Prior work has compared languages by considering applications written

exclusively in a single language, e.g., by implementing the same small task in C, C++,

Fortran, or Visual Basic [2, 129, 71, 93, 77]. We only studied projects that contain both C

and C++ code, to guarantee uniformity in the development process of the application.

Third, we effectively control for developer competence to ensure that changes to

software facets, e.g., quality, can be attributed to the underlying programming language.

We use a statistical analysis of committer distribution to show that the majority of devel-
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opers contribute to both C and C++ code bases (Section 4.3.1); we confirm this with the

developers as well (Section 6.6).

We present our research hypotheses in Section 4.2, followed by data collection and

statistical methodology in Section 5.2. In Figure 4.1 we show the nodes and edges we extract

from the multi-mixed graph (explained in Section 2) for our analysis in understanding the

effects of programming language on software evolution. Formally, we can represent the

hypergraph extracted as shown in Figure 4.1 as:

{(v1, v2)|(v1, v2) ∈ GInterRepoDep|v1 ∈ (vfunc ∨ vmod) ∧ v2 ∈ (vbug ∨ vcontributor)}

We first investigated whether code bases are shifting from C to C++ and found

that this shift occurs for all but one application (Section 4.4.1). We then compared internal

qualities for code bases in each language and could confirm that C++ code has higher

internal quality than C code (Section 4.4.2). We found the same trend for external quality,

i.e., that C++ code is less prone to bugs than C code (Section 4.4.3). Finally, we found

that C++ code takes less maintenance effort than C code (Section 4.4.4).

To our knowledge, this is the first study that compares programming languages

while controlling for variations in both developer expertise and development process, and

draws statistically significant conclusions.

4.2 Research Hypotheses

Our study is centered around four research hypotheses designed to determine

whether C++ (a higher-level programming language) produces better software than C (a
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lower-level language):

H1: C++ is replacing C as a main development language

At the beginning of the development process for an application, the best-suited

language is chosen as the primary language. Later on, developers might decide to replace

the primary language, e.g., if the potential benefits of migrating to a new language outweigh

the costs. Our hypothesis is that, as the advantages of C++ become apparent, applications

that have started with C as their primary language are shifting to C++. To verify this, we

measured the change in percentage of C and C++ code over an application’s lifetime; if the

C++ percentage increases over time, we can conclude that C is being replaced by C++.

H2: C++ code is of higher internal quality than C code

One of the trademarks of high-level languages is that they enable the construction

of software that displays higher internal quality than software written in low-level language,

i.e., software that is less complex, easier to understand and easier to change. To test this

hypothesis, for each application, we computed normalized code complexities for C and C++

using several metrics. If the hypothesis held, we should observe that, on average, C++ code

is less complex than C code.

H3: C++ code is less prone to bugs than C code

Software bugs are due to a variety of reasons, e.g., misunderstood requirements,

programmer error, poor design. The programming language plays a key role in preventing

bugs; for example, polymorphic functions can avoid code cloning and copy-paste errors, and

strongly-typed language eliminate many potential runtime errors. We use this reasoning to

postulate our next hypothesis: due to the higher-level features, C++ code is less bug-prone
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than C code.

H4 : C++ code requires less effort to maintain than C code

Computing the effort that goes into software development and maintenance is dif-

ficult, especially for open-source projects, where the development process is less structured

than in commercial settings [112]. Our findings indicate that even when there is no explicit

allocation of tasks to developers, most developers contribute to both the C and C++ code

bases. Our hypothesis is that the effort required to maintain and extend the C++ code

base is lower than the effort associated with the C code base.

4.3 Methodology and Data Sources

We ran our empirical study on four popular open source applications written in

a combination of C and C++, namely, Firefox, VLC, Blender and MySQL. 1 We used

several criteria for selecting our test applications. First, since we are interested in long-

term software evolution and pursue statistically significant results, the applications had to

have a long release history. Second, applications had to be sizeable, so we can understand

the issues that appear in the evolution of realistic, production-quality software. Third, the

applications had to be actively maintained by a large number of developers. Fourth, the

applications had to be used by a wide number of users who report bugs and submit patches.
1Details on these applications can be found in Chapter 2.
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(a) Firefox (b) Blender

(c) VLC (d) MySQL

Figure 4.2: Committer Distribution.

4.3.1 Data Collection

We now describe our data collection methodology. We first checked out the source

code of all official releases from the version control management systems the applications

use, then collected file change histories, and finally extracted bug information from the

application-specific bug databases.

Committer distribution. An explicit goal of our study was to look at C and

C++ code that was part of the same project, to keep most factors of the software de-

velopment process constant. One such factor is developer expertise; anecdotal evidence

suggests that expertise greatly affects software quality [31]. Ideally, to understand the dif-

ference between the C and C++ languages, we need to study code written by developers

who are proficient in both C and C++. In Figure 4.2 we plot the percentages of devel-

opers who contribute to C++ code base only (top area), C code base only (bottom area)
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and to both C and C++ code bases (middle area). We observe that a large percentage of

developers contribute to both C and C++ code. To verify that developers in the middle

area commit in equal measures to both code bases, we selected random versions from each

application. We then compared the mean values for the C commits and C++ commits for

all those developers who commit to both code bases. We found that the mean values for

C and C++ commits are comparable (using Welch’s t-test as explained in Section 4.3.2),

i.e., most developers commit in equal measures to both code bases. This ensures that we

effectively control for developer competence, and any changes to software attributes (e.g.,

quality) can be attributed to the underlying programming language only. In Section 6.6

we present further evidence against selection bias, i.e., that perceived task difficulty and

developer competence do not determine language choice.

Dividing source code into C and C++ groups. Identifying whether a file

belongs to the C code base or the C++ code base is not trivial, because header files often

use the extension “.h” for both C and C++ headers, while “.hpp” or “.hh” extensions are

reserved for C++ headers. We considered a header file as a C++ header file if and only if

all the files it is included in are C++ files; otherwise we consider it as a C header file. The

implementation files were divided based on extension: “.c” for C files, and “.cpp” or “.cc”

for C++ files.

Collecting file change histories. For testing hypotheses 3 and 4 we need precise

information about bugs and code changes associated with each version. We obtain this

information by analyzing change logs associated with source files, after dividing files into C

and C++ groups. Note that it is not sufficient to extract change histories for files in the
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last version only, because some files get deleted as the software evolves; rather, we need to

perform this process for each version.

Accurate bug counting. We use defect density to assess external quality. Col-

lecting this information is non-trivial, due to incomplete information in bug databases. As

we explain shortly, to ensure accuracy, we cross-check information from bug databases2 with

bug information extracted from change logs. One problem arises from bugs assigned to no

particular version; for instance, 33% of the fixed bugs in Firefox are not assigned to a spe-

cific Firefox version in the Bugzilla database. This problem is compounded in applications

which exhibit parallel evolution, as the co-existence of two or more parallel development

branches makes version assignment problematic. Another problem is that, often, for bug

fixes that span several files, the bug databases report only a partial list of changed files.

However, if we search for the bug ID in the change logs, we get the complete list of files

that were changed due to a particular bug fix. Therefore, we used both bug databases and

change logs as bug data sources. We used a two-step approach for bug counting. First,

we searched for keywords such as “bug”, “bugs”, “bug fixes”, and “fixed bug”, or refer-

ences to bug IDs in log files; similar methods have been used by other researchers for their

studies [149, 50, 114]. Second, we cross-checked our findings from the log files with the infor-

mation in the databases to improve accuracy, similar to techniques used by other researchers

for computing defect density or fault prediction [80, 149]). With the bug information at

hand, we then associate a certain bug to a certain version: we used release tags, dates the

bug was reported, and commit messages to find the version in which the bug was reported
2Defect tracking systems vary: Firefox uses the Bugzilla database [32], Blender uses it own tracker [24],

VLC uses Trac [156], and MySQL uses Bazaar [10] and Launchpad [90].
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in, and we attributed the bug to the previous release.

Extracting effort information. To measure maintenance effort, we counted the

number of commits and the churned eLOC 3 (sum of the added and changed lines of code)

for each file for a release, in a manner similar to previous work by other researchers [121, 48].

This information is available from the log files.

4.3.2 Statistical Analysis

Variations in release frequency. Our applications have different release fre-

quencies: Firefox, VLC, and Blender have pre-releases (alpha or beta) before a major

release, while MySQL has major releases only. Differences in release frequency and number

of official versions (more than 80 for Firefox and VLC, 27 for Blender and 13 for MySQL)

lead to an imbalance while performing statistical analyses across all applications and could

affect our study. In particular, if we allowed the values for Firefox and VLC to dominate

the sample size, then the net results would be biased towards the mean of the values in the

Firefox and VLC sample sets. To preserve generality and statistical significance, we equalize

the sample set sizes as follows: for each official release date, we construct an observation

for each application; the value for each observation is either actual, or linearly interpolated

from the closest official releases, based on the time distance between the actual release and

the day of the observation. This procedure ensures that we have an equal number of obser-

vations for all applications and eliminates bias due to varying release frequencies. To ensure

that the interpolated values do not introduce noise in our sample, we tested whether the
3Effective lines of code (eLOC) are those lines that are not comments, blanks or standalone braces or

parentheses.
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original sample sets are normally distributed by using the Kolmogorov–Smirnov normality

test. 4 We found that most of our original data sets are normally distributed and hence we

can safely add the interpolated values to our sample.

Hypothesis testing. We perform statistical hypothesis testing to validate our

analyses and the conclusions we draw. We use the t-test method to analyze our samples.

For instance, if we have two sample sets, A and B, the t-test predicts the probability that

a randomly chosen value from set A will be greater, lesser or equal to a randomly chosen

value in set B. Although our sample sizes are equal, their variances differ, and therefore

we use a special case of t-test called Welch’s t-test [166]. For the rest of the chapter, by

t-test we mean Welch’s t-test. The t-test returns a t-value for a fixed level of statistical

significance and the mean values of each of the sample sets. In our study we only consider 1%

statistically significant t-values, to minimize chances of Type I error.5 According to standard

t-test tables, the results are statistically significant at the 1% level if t-value ≥ 2.08. In our

case, we compute the values for a particular metric for both C and C++ code bases and

perform a t-test on the individual sample sets. For example, if for a certain metric, the

t-test returns a t-value ≥ 2.08 and the mean of the C sample set is greater than the mean

of the C++ sample set, we claim a statistical significance of 1% ; that is, if a value is chosen

randomly from the C sample set, there is a 99% probability that the value of the random

variable chosen will be closer to the mean of the C sample set than to the mean value of the

C++ sample set. For each hypothesis testing, we report the mean of each sample set from

C and C++ code bases, the t-values and the degrees of freedom, df.6 We perform regression
4The Kolmogorov–Smirnov test is used for testing the normality of a distribution.
5A Type I error occurs when an acceptable hypothesis is rejected.
6Degrees of freedom is the number of independent observations in a sample of data that are available to
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analysis for testing hypothesis H1, where we report the p-value, which is analogous to the

t-value for the t-tests. For 1% statistically significant results, we must have p-value ≤ 0.01.

4.4 Study

In this section we discuss each hypothesis, the metrics we use to test it, as well as

our findings. For conciseness, we only present selected graphs for each hypothesis; however,

interested readers can refer to our technical report [18] for the complete set of graphs.

4.4.1 Code Distribution

Hypothesis (H1
A): C++ is replacing C as a main development language. Metrics.

To test this hypothesis we study how the percentages of C and C++ code change as an

application evolves. We measure the eLOC of C and C++ code for each version using

the Resource Standard Metrics (RSM) tool [141]. If the hypothesis holds, we should find

that C++ percentages increase over an application’s lifetime. Results. In Figure 4.3

and Table 4.1 we show the changes in C and C++ code percentages. To verify whether,

estimate a parameter of the population from which that sample is drawn.

Application First release Last release
C C++ C C++
(%) (%) (%) (%)

Firefox 25.08 74.91 20.13 79.86
Blender 47.84 52.15 77.52 22.47
VLC 98.65 1.35 79.86 20.14
MySQL 49.82 50.17 40.35 59.64

Table 4.1: Percentage of C and C++ code.
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(a) Firefox (b) Blender

(c) VLC (d) MySQL

Figure 4.3: eLOC distribution per language.

over time, the code base is shifting from C to C++, we perform a statistical hypothesis

testing. Our null hypothesis, H1
0 , is that, over time, the code base division between C and

C++ either remains constant, or the percentage of C code increases. We perform a two-

step statistical analysis to verify this: (1) we measure the difference δ in the percentages

of both C and C++ code (δ = %C++ − %C), and (2) we perform a linear regression

analysis, where the independent variable is time (number of days since first release) and

the dependent variable is δ. If H1
0 is true, we should find that β ≤ 0; if H1

0 is rejected,

we should have β > 0. We first perform this hypothesis testing across all applications (as

described in Section 4.3.2) and then for each individual application. We present the results

of the hypothesis testing in Table 4.2 when measured across all applications. Since we have

β > 0 and p-value ≤ 0.01, we reject the null hypothesis H1
0 . Therefore, when performing

the analysis across all applications, we observe that the primary code base is shifting from

C to C++, i.e., H1
A is confirmed. In Table 4.3, we present the results for applications when
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tested in isolation. We observe that we can reject H1
0 for all applications except Blender.

The p-values presented for H1
0 do not imply that, for a given version of an application, the

percentage of C++ code in that version is higher than the percentage of C code; rather,

they imply that if a version of an application is chosen at random, there is a 99% probability

that the percentage of C++ code in that version will be higher than in previously released

versions of the same application.

Conclusion. Using linear regression, we confirmed that the percentage of C code

is decreasing over time. However, when considering Blender in isolation, we notice a decrease

in the percentage of C++ code, which is also evident from Figure 4.3(b) and Table 4.1. The

reason behind the increase in the percentage of C code in Blender, as explained by one of

the main developers [25], is that the developers “try to keep sections in the same code they

were originally developed in.”

4.4.2 Internal Quality

Hypothesis (H2
A): C++ code is of higher internal quality than C code.

Metrics. Internal quality is a measure of how easy it is to understand and main-

tain an application. For each file in each application version, we use RSM to compute

two standard metrics: cyclomatic complexity 7 and interface complexity. 8 As pointed out

by Mockus et al. [112], normalizing the absolute value of a metric by dividing it by total

eLOC is problematic. Since only a fraction of the code changes as the application evolves,
7Cyclomatic complexity is the number of logical pathways through a function [104].
8Interface complexity is the sum of number of input parameters to a function and the number of return

states from that function [142].
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Criterion Conclusion
H1

0 H1
0 is rejected at 1% significance level

(β = 0.0036, p-value = 0.0002, df = 702)
H1

A H1
A is accepted (% of C code is decreasing

over time, while % of C++ code is increasing)

Table 4.2: Hypothesis testing for shift in code distribution (H1 ).

Application β p-value df Conclusion
(1% sig- for
nificance) H1

0

Firefox 0.0019 0.00049 97 Rejected
Blender −0.0196 0.00001 27 Not rejected
VLC 0.0118 0.0007 72 Rejected
MySQL 0.0041 0.00262 11 Rejected

Table 4.3: Application-specific hypothesis testing for shift in code distribution (H1 ).

normalized values become artificially lower as the size of the source code increases. In our

case, we found that the distributions of complexity values (across all files, for a particular

application version) are skewed, thus arithmetic mean is not the right indicator of an on-

going trend. Therefore, to measure complexity for a specific version, we use the geometric

mean computed across the complexity values for each file in that version. These geometric

mean values constitute the sample sets for our hypothesis testing.

Results. Our null hypothesis is that C code has lower or equal code complexity

compared to C++. To test this, we formulate two null sub-hypotheses corresponding to

each complexity metric:

Hc1
0 : The cyclomatic complexity of C code is less than or equal to the cyclomatic complexity

of C++ code.
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(a) Interface complexity (geometric mean) (b) Cyclomatic complexity (geometric mean)

Figure 4.4: Internal Quality in Firefox.

(a) Interface complexity (geometric mean) (b) Cyclomatic complexity (geometric mean)

Figure 4.5: Internal Quality in VLC.

Hc2
0 : The interface complexity of C code is less than or equal to the interface complexity

of C++ code.

If we reject hypotheses Hc1
0 and Hc2

0 , we conclude that the cyclomatic and interface com-

plexities of C code are greater than those of C++ code. We perform two t-tests on each

hypothesis: across all applications, and on individual applications. The results of both

t-tests are presented in Tables 4.4, 4.5, and 4.6. Since the t-values are greater than 2.08,

both when measured across all applications and when considering the projects in isolation,

we could reject both null sub-hypotheses. Moreover, as can be seen in Tables 4.4, 4.5,

and 4.6, the mean values for the C sets are significantly higher than the mean values for

the C++ sets.

We now discuss application-specific changes we noticed during this analysis. For
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VLC (Figure 4.5)9 we find that, although initially both C and C++ have similar complexity

values, starting in 2005, the interface complexity of C++ code decreases, while the interface

complexity for C increases. However, for Firefox (Figure 4.4), Blender, and MySQL, the

complexity of C code is always greater than that of C++ code. Conclusion. For all the

applications we consider, we could confirm that C++ code has higher internal quality than

C code.

4.4.3 External Quality

Hypothesis (H3
A): C++ code is less prone to bugs than C code.

Metrics. External quality refers to users’ perception and acceptance of the soft-

ware. Since perception and acceptance are difficult to quantify, we rely on defect density as

a proxy for external quality. Similar to Mockus et al. [112], we use two metrics for defect

density: number of defects divided by the total eLOC and number of defects divided by

the change in eLOC (∆eLOC). As discussed by Mockus et al., number of defects per total
9To increase legibility, we deleted the markers for some minor or maintenance releases from Figures 4.4–

4.9. The actual values are reflected in graph curves, hence this does not affect our results and analyses.

Criterion Conclusion
Hc1

0 Hc1
0 is rejected at 1% significance level

(|t| = 5.055 when df = 354)
Mean values: C = 16.57 , C++ = 11.02

Hc2
0 Hc2

0 is rejected at 1% significance level
(|t| = 3.836 when df = 387)
Mean values: C = 16.52 , C++ = 12.63

H2
A H2

A is accepted (C++ code is of higher
internal quality than C.)

Table 4.4: t-test results for code complexities (H2 ) across all applications.
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Application Mean values |t| df
C C++ (1% significance)

Firefox 6.44 4.46 3.19 146
VLC 31.64 20.41 8.73 144

Blender 7.19 4.11 5.29 54
MySQL 28.17 21.52 2.11 12

Table 4.5: Application-specific t-test results for cyclomatic complexity.

Application Mean values |t| df
C C++ (1% significance)

Firefox 6.78 6.18 9.45 188
VLC 28.20 22.92 3.61 144

Blender 13.80 5.86 16.63 54
MySQL 27.71 17.13 3.41 22

Table 4.6: Application-specific t-test results for interface complexity.

eLOC is potentially problematic as only a fraction of the original code changes in the new

version of an application. Measuring defects over ∆eLOC is thus a good indicator of how

many bugs were introduced in the newly added code.

Results. Our null hypothesis is: “C code has lower or equal defect density than

C++ code.” Based on the metrics we use to measure defect density, we divide the main

hypothesis into two null sub-hypotheses:

Hd1
0 : The defect density (measured over ∆eLOC) for C code is less than or equal to defect

density in C++ code.

Hd2
0 : The defect density (measured over total eLOC) for C code is less than or equal to

defect density in C++ code.

Similar to t-tests for code complexity, we perform two sets of t-tests: one across all ap-

116



www.manaraa.com

(a) Defect Density over ∆eLOC (b) Defect Density over total eLOC

Figure 4.6: Defect Density in VLC.

(a) Defect Density over ∆eLOC (b) Defect Density over total eLOC

Figure 4.7: Defect Density in MySQL.

plications, and another, for each application individually, using the original values. We

present the results of the two tests in Tables 4.7, 4.8, and 4.9. From the t-values and differ-

ences in the mean defect densities of C and C++, we could reject both null sub-hypotheses

when measured across all applications. When we apply the t-test using absolute values of

defect densities for individual applications, we reject the null hypothesis at a statistically

significant level for all programs except MySQL. This is caused by the unavailability of bug

information for minor MySQL releases (which results in a small sample size for MySQL

only) and does not affect the statistical significance of our conclusions, i.e., accepting H3
A.

As can be seen in Tables 4.7, 4.8, and 4.9, the mean defect density values for the C sets

can be up to an order of magnitude higher than the mean values for the C++ sets.

In Figure 4.6 we present the evolution of defect densities in VLC (Firefox is sim-
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ilar [18]), and note that these values tend to oscillate. The oscillations are due to bugs in

major releases; these bugs tend to be subsequently fixed in maintenance releases. In MySQL

we found that, for the first version only, the defect density of C++ code is slightly higher

than the defect density of C code (when measured over total eLOC, see Figure 4.7(b)); this

is not the case for subsequent versions. In Blender, we found that C code had higher defect

density than C++, for both metrics; we omit the graphs for brevity.

Conclusion. Based on the t-test results, we could confirm H3
A, that is, C++ code

is less prone to bugs than C code.

4.4.4 Maintenance Effort

Hypothesis (H4
A): C++ code requires less effort to maintain than C code.

Metrics. Prior work [48, 84, 82] has indicated that measuring software mainte-

nance effort, or building effort estimation models for open source software is non-trivial,

due to several reasons, e.g., the absence of organizational structure, developers working at

their leisure. A widely used metric for effort is the number of commits divided by total

eLOC [63, 82]. To avoid considering those parts of code which remain unchanged in a new

release (similar to the argument presented for measuring defect density in Section 4.4.3),

we also measure number of commits divided by ∆eLOC.

Results. Our null hypothesis is: “C files require less or equal effort to maintain

than C++ files.” We divide this into two null sub-hypotheses using the effort metrics we

discussed:

He1
0 : The maintenance effort (measured over ∆eLOC) for C files is less than, or equal to,
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Criterion Conclusion
Hd1

0 Hd1
0 is rejected at 1% significance level

(|t| = 4.77 when df = 482)
Mean values: C = 0.109 , C++ = 0.015

Hd2
0 Hd2

0 is rejected at 1% significance level
(|t| = 4.82 when df = 489)
Mean values: C = 0.04 , C++ = 0.006

H3
A H3

A is accepted (C++ code is less prone
to bugs than C code.)

Table 4.7: t-test results for defect density (H3 ) across all applications.

Application Mean values |t| df
C C++ (1% significance)

Firefox 0.02607 0.01939 1.0417 139
VLC 0.00178 0.00093 5.0455 87

Blender 0.03246 0.01981 1.7077 54
MySQL 0.00012 0.00007 0.6080 4

Table 4.8: Application-specific t-test results for defect density over ∆eLOC.

(a) Effort over ∆eLOC (b) Effort over total eLOC

Figure 4.8: Maintenance Effort for Blender.

the maintenance effort for C++ files.

He2
0 : The maintenance effort (measured over total eLOC) for C files is less than, or equal

to, the maintenance effort for C++ files.

When we perform the t-test across all applications, we could not reject our null hypothesis

He1
0 at 1% significance level, as shown in Table 4.10. This is due to the very small differ-
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Application Mean values |t| df
C C++ (1% significance)

Firefox 0.43246 0.16294 2.6412 106
VLC 0.00119 0.0001 9.8210 49

Blender 0.00551 0.00128 4.5520 30
MySQL 0.00046 0.00036 0.5190 3

Table 4.9: Application-specific t-test results for defect density over total eLOC.

(a) Effort over ∆eLOC (b) Effort over total eLOC

Figure 4.9: Maintenance Effort for VLC.

ence between the mean values of effort for C and C++ files when measured over ∆eLOC.

However, we could reject our null hypothesis He2
0 and confirm that the effort to maintain

C files (when measured over total eLOC) is higher than the effort for C++ files. Note

that we could reject He1
0 at a weaker level of significance (10%), but, to retain uniformity

and reduce the probability of introducing errors in our conclusions, we employ 1% level of

significance across all hypothesis testing.

In Tables 4.11 and 4.12 we present our t-test results on He1
0 and He2

0 for individual

applications. While we could only reject the null sub-hypotheses for VLC, note that the

mean values for C are higher than the mean values for C++ for all applications.

From Figures 4.8 and 4.9 we notice how the file maintenance effort changes over

time for VLC and Blender. As evident from the mean values from Tables 4.11 and 4.12,
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even though for one version the absolute value for effort for C++ files might be higher than

C, across the whole evolution period, the maintenance effort values for C files is higher than

the effort required to maintain C++ files.

Conclusion. We could confirm our hypothesis only when measuring maintenance

effort over total eLOC. When measuring maintenance effort over ∆eLOC, even though the

mean values for C++ files are less than the mean values for C files, we could not validate

our hypothesis at a statistically significant level.

4.5 Threats to Validity

We now present possible threats to the validity of this chapter’s work.

Selection Bias. An important trait of our study is aiming to reduce selection

bias, i.e., making sure that high-level languages do not appear to be “better” because they

are favored by more competent developers, or are used for easier tasks. Therefore, following

our quantitative analysis, we also asked developers several questions to determine whether

there is bias in language selection. For example, a key VLC developer stated [42] that

Criterion Conclusion
He1

0 He1
0 is not rejected at 1% significance

level (|t| = 1.218 when df = 147)
Mean values: C = 1.07 , C++ = 0.999

He1
0 is rejected at 10% significance level

He2
0 He2

0 is rejected at 1% significance level
(|t| = 2.455 when df = 102)
Mean values: C = 0.594 , C++ = 0.26

Table 4.10: t-test results for maintenance effort (H4 ) across all applications.
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Application Mean values |t| df
C C++ (1% significance)

Firefox 4.1780 2.9626 1.0824 15
VLC 0.1719 0.0154 5.4499 49

Blender 0.1026 0.0919 1.7077 54
MySQL 0.0004 0.0002 0.6080 4

Table 4.11: Application-specific t-test results for maintenance effort over ∆eLOC.

Application Mean values |t| df
C C++ (1% significance)

Firefox 2.4110 0.9217 4.9284 12
VLC 0.0119 0.0104 0.5180 95

Blender 0.0114 0.0069 1.2568 9
MySQL 0.0017 0.0012 1.0737 3

Table 4.12: Application-specific t-test results for effort maintenance over total eLOC.

“developers are expected to know C and C++” when they join the project and perceived

difficulty of implementing a task “does not really [play a role in selecting the language].”

Moreover, for the VLC project, LUA, a high-level language, is preferable to C: “LUA is

used most for text processing, where performance is not critical, and C would be too prone

to programming errors [...] Where performance is not an issue [...] C code has and will

continue to be replaced with LUA code.” Perceived task difficulty does not play a role in

language selection in Blender either, as indicated in Section 4.4.1.

Empirical Studies. The empirical nature of our study exposes it to construct,

content, internal and external threats to validity.

Construct validity relies on the assumption that our metrics actually capture the

intended characteristic, e.g., defect density accurately models external quality, source code

metrics accurately model internal quality. We intentionally used multiple metrics for each
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hypothesis to reduce this threat. We randomly chose several versions from each application

and verified that, for those developers who commit to both code bases, the number of C

commits and C++ commits are comparable. This balance indicates developers have no

selection bias towards which code base they want to commit to—an assumption confirmed

by developers.

To ensure content validity we selected applications that contain both C and C++

code, written by developers who contribute to both code bases, and we analyzed as long a

time span in a program’s lifetime as possible. For Firefox, we do not count bugs labeled as

“invalid bugs,” though we found 7 instances (out of 5786 Firefox bugs) where these bugs

were re-opened in subsequent versions. There is a possibility that invalid bugs might be

re-opened in the future, which will very slightly change our results.

Internal validity relies on our ability to attribute any change in system character-

istics (e.g., metric values or eLOC) to changes in the source code, rather than accidentally

including or excluding files, inadvertently omitting bugs or commits. We tried to mitigate

this threat by (1) manually inspecting the releases showing large gains (or drops) in the

value of a metric, to make sure the change is legitimate, and (2) cross-checking the change

logs with information from bug databases as described in Section 4.3.1. When we group

committers by the code base they are contributing to, we use committer IDs to assign de-

velopers to the C code base, to the C++ code base, or to both code bases. Since we cannot

differentiate among committers who have multiple IDs, we run the risk of over-reporting or

under-reporting the number of committers.

External validity, i.e., the results generalize to other systems, is also threatened
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in our study. We have looked at four open-source projects written in a combination of

C and C++ to keep factors such as developer competence or software process uniform.

Therefore we cannot claim that arbitrary programs written in C++ are of higher quality

than arbitrary programs written in C; nevertheless, we show that all other factors being

equal, the choice of programming language does affect quality. It is also difficult to conclude

that our proposed hypotheses hold for proprietary software, or for software written in other

combinations of lower- and higher-level languages, e.g., C and Java or C and Ruby.

4.6 Contribution Summary

In summary, our main contributions are:

• A novel way to analyze factors that impact software quality while controlling for both

developer expertise and the software development process.

• A multi-faceted software evolution study of four large applications, measuring software

quality, development effort, and code base shifts between languages.

• Formulation of four hypotheses and statistical analyses designed to capture whether

a particular language leads to better software.

4.7 Conclusions

In this chapter we introduce a novel methodology for quantifying the impact of pro-

gramming language on software quality and developer productivity. To keep factors such as

developer competence or software process uniform, we investigate open source applications
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written in a combination of C and C++. We formulate four hypotheses that investigate

whether using C++ leads to better software than using C. We test these hypotheses on

large data sets to ensure statistically significant results. Our analyses demonstrate that

applications that start with C as the primary language are shifting their code base to C++,

and that C++ code is less complex, less prone to errors and requires less effort to maintain.
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Chapter 5

A Graph-based Characterization of

Software Changes

In this chapter, we argue that emerging techniques in Network Sciences and graph-

mining approaches can help to better understand software evolution, and to construct pre-

dictors that facilitate development and maintenance. Specifically, we show how we can use

a graph-based characterization of a software system to capture its evolution and facilitate

development, by helping us estimate bug severity, prioritize refactoring efforts, and predict

defect-prone releases. Our work consists of three main thrusts. First, we construct graphs

that capture software structure at two different levels: (a) the product, i.e., source code and

module level, and (b) the process, i.e., developer collaboration level. We identify a set of

graph metrics that capture interesting properties of these graphs. Second, we study the evo-

lution of eleven open source programs, including Firefox, Eclipse, MySQL, over the lifespan

of the programs, typically a decade or more. Our metrics detect some surprising similari-
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ties but also significant differences in the evolution of these programs. Third, we show how

our graph metrics can be used to construct predictors for bug severity, high-maintenance

software parts, and failure-prone releases.

5.1 Introduction

Graph-based analysis and mining of complex systems have experienced a resur-

gence, under the name of Network Science (or graph mining). There is a good reason for

this: Network Science has revolutionized the modeling and analysis of complex systems in

many disciplines and practical problems. For example, graph-based methods have opened

new capabilities in classifying network traffic [73, 74], modeling the topology of networks

and the Web [46, 6], and understanding biological systems [172, 6]. What these approaches

have in common is the creation of graph-based models to represent communication patterns,

topology or relationships. Given a graph model, one can unleash a large toolset of tech-

niques to discover patterns and communities, detect abnormalities and outliers, or predict

trends.

The overarching goal of this chapter is to find whether graph-based methods fa-

cilitate software engineering tasks. Specifically, we use two fundamental questions to drive

our work: (a) how can we improve maintenance by identifying which components to debug,

test, or refactor first?, and (b) can we predict the defect count of an upcoming software

The work presented in this chapter have been published in the proceedings of the 2012 IEEE International
Conference on Software Engineering [14]. I would like to thank Dr. Marios Illiofotou, a co-author of this
work for letting me use his Perl scripts which were useful in computing several graph metrics.
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release?

Note that our intention is not to find the best possible method for each question,

but to examine if a graph-based method can help, through the use of an appropriately-

constructed graph model of the software system. While we use these two indicative ques-

tions here, we believe there could be other questions that can be addressed with graph-based

approaches. Our thesis is that graph-based approaches can help to better understand soft-

ware evolution, and to construct predictors that facilitate development and maintenance. To

substantiate, we show how we can create graph-based models that capture important prop-

erties of an evolving software system. We analyze eleven open-source software programs,

including Firefox, Eclipse, MySQL, Samba, over their documented lifespans, typically a

decade or more. Our results show that our graph metrics can detect significant structural

changes, and can help us estimate bug severity, prioritize debugging efforts, and predict

defect-prone releases.

Our contributions can be grouped in three thrusts.

a. Graphs hide a wealth of information regarding software engineering aspects. We

propose the use of graphs to model software at two different levels and for each level, we

propose two different granularities.

At the software product level, we model the software structure, at the granularity

of functions (function-level interaction) and modules (module-level interaction).

At the software process level, we model the interactions between developers when

fixing bugs and adding new features. We use two construction methods: the bug-based

developer collaboration, which captures how a bug-fix is passed among developers, and
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commit-based developer collaboration which represents how many developers collaborated

in events other than bug fixes, by analyzing the commit logs.

b. Graph metrics capture significant events in the software lifecycle. We study the

evolution of the graph models of these programs over one to two decades. We find that these

graphs exhibit some significant structural differences, and some fundamental similarities.

Specifically, some graph metrics vary significantly among different programs, while other

metrics captures persistent behaviors and reveal major evolutionary events across all the

examined programs. For example, our graph metrics have revealed major changes in soft-

ware architecture in mid-stream releases (not ending in “.0”): OpenSSH 3.7, VLC-0.8.2 and

Firefox 1.5 show big changes in graph metrics which, upon inspection, indicate architectural

changes that trump changes observed in “.0” versions of those programs. Similarly, our edit

distance metric has detected a major change in Samba’s code structure in release 1.9.00

(Jan 22, 1995), due to major bug fixes and feature additions; the change is not apparent

when examining other metrics such as eLOC.

c. Our graph metrics can be used to predict bug severity, maintenance effort and

defect-prone releases. The cornerstone of our work is that our graph metrics and models can

be used to suggest, infer, and predict important software engineering aspects. Apart from

helping researchers construct predictors and evolution models, our findings can help prac-

titioners in tasks such as: identifying the most important functions or modules, prioritizing

bug fixes, estimating maintenance effort:

1. We show how NodeRank, a graph metric akin to PageRank, can predict bug

severity.
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2. We show how the Modularity Ratio metric can predict which modules will incur

high maintenance effort.

3. We demonstrate that by analyzing the edit distance in the developer collabo-

ration graphs we can predict failure-prone releases.

While these predictors might seem intuitive, we are the first to quantify the mag-

nitude and lag of the predictors. More importantly, the goal of our work is to establish

that Network Science analysis and metrics capture and reflect important software engi-

neering properties and become a bridge between Network Science concepts with software

engineering methods and practices.

5.2 Methodology and Applications

We used four kinds of graphs for this study as shown in Figure 5.1: (1) function

call graphs (GFunc), (2) module collaboration graphs (GMod), (3) source-code based de-

veloper collaboration graphs (GSrcCodeColl), and (4) bug tossing graphs (GBugToss). The

methodology and formal definition used in extracting these graphs have been explained in

Chapter 2.2.1. We based our study on eleven popular open source applications. 1

5.3 Metrics

We introduce the graph metrics, and the software engineering concepts, which we

will use in our work.
1The details about these applications can be found in Chapter 2.
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Figure 5.1: Hypergraph extraction for a graph-based approach to characterize software
changes (GFunc, GMod, GSrcCodeColl, GBugToss).

5.3.1 Graph Metrics

For each metric, we indicate if it is calculated on a directed and undirected graph.

Our graphs are initially directed, but can be trivially transformed into undirected graphs,

by ignoring the directivity of the edges.

Average degree (directed graph). In a graph G(V,E), V denotes the set of

nodes and E denotes the set of edges. The average degree is defined as:

k̄ =
2|E|
|V |

Clustering coefficient (undirected graph).

The clustering coefficient C(u) of a node u captures the local connectivity, or the

probability that two neighbors of u are also connected. Formally, it is defined as the ratio of

the number of existing edges between all neighbors of u over the maximum possible number
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of such edges. Let |{ejk}| be the number of edges between u’s neighbors and ku be the

number of u’s neighbors. Then, we have:

C(u) =
2|{ejk}|
ku(ku − 1)

The metric is meaningful for nodes with at least two neighbors. The average clustering

coefficient of a graph is the average clustering coefficient over all the nodes.

NodeRank (directed graph). We define a measure called NodeRank that as-

signs a numerical weight to each node in a graph, to measure the relative importance of

that node in the software—this rank is similar to PageRank [29], which represents the sta-

tionary distribution of the graph interpreted as a Markov chain. There are several ways for

defining and calculating the PageRank. Here, we use the following recursive calculation.

For a node u, let NR(u) be its NodeRank, and let the set INu contains all the nodes v that

have an outgoing edge to u. We assign equal NoderRank values to all nodes initially. In

every iteration, the new NR(u) is the sum over all v ∈ INu:

NR(u) =
∑

v∈INu

NR(v)
OutDegree(v)

We stop the iteration when the NodeRank values converge, which is quite fast in

all our graphs. Note that to enable convergence, at the end of every iteration, we normalize

all values so that their sum is equal to one. Intuitively, the higher the NodeRank of a vertex

u, the more important u is for the program, because many other modules or functions

depend on it (i.e., call it). Similarly, in the developer collaboration graph, a developer D

with a high NR(D) signifies a reputable developer.
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Graph diameter (undirected graph). is the longest shortest path between

any two vertices in the graph.

Assortativity (undirected graph). The assortativity coefficient is a correlation

coefficient between the degrees of nodes on two ends of an edge; it quantifies the preference

of a network’s nodes to connect with nodes that are similar or different, as follows. A

positive assortativity coefficient indicates that nodes tend to link to other nodes with the

same or similar degree. Assortativity has been extensively used in other Network Science

studies. For instance, in social networks, highly connected nodes tend to be connected

with other high degree nodes [106]. On the other hand, biological networks typically show

disassortativity, as high degree nodes tend to attach to low degree nodes [123].

Edit distance (directed graph). The metrics we described so far characterize

a single program release, e.g., the module collaboration graph for release 1. To find out how

program structure changes over time, we introduce a metric that captures the number of

changes in vertices and edges between two graphs, in our case between successive releases.

The edit distance ED(G1, G2) between two graphs G1(V1, E1) and G2(V2, E2) is defined as

follows:

ED(G1, G2) = |V1|+ |V2| − 2 ∗ |V1 ∩ V2|+ |E1|+ |E2| − 2 ∗ |E1 ∩ E2|

Intuitively, if G1 and G2 model software structures for releases 1 and 2, then high

values of ED(G1, G2) indicate large-scale structural changes between releases.

Modularity ratio (directed graph). Standard software engineering practice

suggests that software design exhibiting high cohesion and low coupling provides a host
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of benefits, as it makes software easy to understand, easy to test, and easy to evolve [55].

Therefore, we define the modularity ratio of a module A as the ratio between its cohesion

and its coupling values:

ModularityRatio(A) =
Cohesion(A)
Coupling(A)

where Cohesion(A) is the total number of intra-module calls or variable references in A;

Coupling(A) is the total number of inter-module calls or variable references in A.

5.3.2 Defects and Effort

Defect density. We use defect density to assess external application quality. To

ensure accuracy, we extract (and cross-check) information from bug databases and bug in-

formation extracted from change logs. With the bug information at hand, we then associate

a certain bug to a certain version: we use release tags, dates the bug was reported, and

commit messages to find the version in which the bug was reported in, and we attributed

the bug to the previous release.

Effort. To measure development and maintenance effort, we counted the number

of commits and the churned eLOC (sum of the added and changed lines of code) for each

file for a release, in a manner similar to previous work by other researchers [121, 48]. This

information is available from the log files.
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Figure 5.2: Change in Average Degree over time.

5.4 A Graph-based Characterization of Software Structure

and Evolution

Most prior work on source code-based graph analysis has focused on characterizing

single releases [94, 118, 159, 158, 150, 98, 97, 168, 157] or analyzing limited evolution time

spans [160], or a longer evolution time span for a single program [163]. Therefore, one of

the objectives of our study was to analyze complete lifespans of large projects and observe

how the graphs evolve over time. This puts us in a position to answer questions such as:
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Figure 5.3: Change in Clustering Coefficient over time.

Can graph metrics detect non-obvious “pivotal” moments in a program’s evolu-

tion?

Are there invariants and metric values that hold across all programs?

Are there evolution trends that are common across programs?

We now proceed to showing how these metrics evolve over time for our examined

applications and discuss how these changes and trends in graph metrics could affect various

software engineering aspects, both for the product and for the process. The numeric results,
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Figure 5.4: Change in Number of Cycles over time.

i.e., metric values for the first and last releases, are shown in Table 5.1. The evolution charts

are in Figures 5.2 – 5.8. The data and figures refer to function call graphs.

Nodes and edges. The initial and final number of nodes and edges are presented

in Table 5.1. Due to lack of space, we do not present evolution charts. However, we have

observed that some programs exhibit linear growth (Bind, SQLite, OpenSSH, MySQL) and

some super linear growth (Blender Samba, VLC) in terms of number of nodes over time.

The same observation holds for the evolution of the number of edges. This is intuitive, since,
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Figure 5.5: Change in Graph Diameter over time.

as shown in Table 2.4, program size (eLOC) grows over the studied spans for all programs.

The only outlier was Sendmail where we noticed that neither the number of nodes,

nor the number of edges increase, although eLOC increases (cf. Table 2.4). We believe this

to be due to the maturity of Sendmail—code is added to existing functions, rather than

new functions being added, hence the increase in the size (in eLOC) of each function but

no increase in the number of functions. The number of eLOC per node differ significantly

across programs, from 10 to 323; the number of eLOC per edge ranged from 5 to 150. Values
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Figure 5.6: Change in Assortativity over time.

of both metrics decrease with evolution for Firefox, Blender, VLC, MySQL, OpenSSH and

SQLite; and increase for Samba, Bind, Sendmail and Vsftpd.

Average degree. Intuitively, the degree of a function or module indicates its

popularity. The average degree of a graph helps quantify coarseness: graphs with high

average degrees tend to be tightly connected [99]. In Figures 5.2 we show the evolution of

this metric for each program. We find that for all programs but MySQL, the average degree

increases with time, albeit this increase tends to be slight, and the value range is 2–10. One
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Figure 5.7: Change in Edit Distance over time.

interesting aspect to note is the average degree of Firefox, which is orders of magnitude

higher, ranging from 20 to 60.

On further investigation we found that the graph topology for Firefox differs sig-

nificantly from the remaining projects. The three notable observations are: (1) the majority

of the nodes have low degree (average degree less than 20) and they are not connected with

each other, (2) a large group of high-degree nodes (average degree 200–800) are intercon-

nected with each other and form a dense core in the graph, and (3) most of the low degree
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Figure 5.8: Change in Modularity Ratio over time.

nodes are connected with this dense core. We found that this group of nodes with high

degree and high interconnectivity are part of the common library in Mozilla used by the

majority of the products, including Firefox. On the contrary, in the other projects where

the average degree is low, we found that: (1) the majority of nodes have degree close to the

average degree of the graph, and (2) there are very few nodes of high degree and very few

of them connect with each other.

Clustering coefficient. As defined in Section 5.3.1, the clustering coefficient is
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a measure of how well-connected the local neighborhoods are in a graph. Zero values of

this coefficient indicate a bipartite graph. High values of clustering coefficient indicate tight

connectivity and violate good software engineering practice, because graph nodes do not

form a hierarchy of levels of abstraction (due to the presence of horizontal and backward

edges), which complicates program understanding, testing, and evolution [55, 128].

In our case (Table 5.1), we found that for Vsftpd, SQLite, Sendmail and all but

the last release of Bind, the clustering coefficient values are zero throughout the project’s

lifetime, suggesting bipartite graphs; we verified that indeed these programs have bipartite

call graphs. In the case of VLC, we found that in version 0.7.0 there was a sudden rise in the

clustering coefficient value. On further investigation we found that the Flac demuxer code

was rewritten for this version; although the function signatures remained the same from

the previous version, there was a significant change in intra-module calls in the demuxer

module leading to an increase in clustering coefficient. For the remaining programs, we

find that clustering coefficients are remarkably similar: their range is 0.08–0.20 and values

decrease over time, with the exception of Firefox.

Number of nodes in cycles. Cycles in software structure affect software quality

negatively. For example, cycles in the module collaboration graph indicate circular module

dependencies, hence modules that are hard to understand and hard to test: “nothing works

until everything works, ” as per standard software engineering literature [128, 55]. Cycles

in the call graph indicate a chain of mutually recursive functions, which again are hard to

understand, test, and require a carefully orchestrated end-recursion condition. An increase

in the number of nodes in cycles from one release to another would signify decrease in soft-
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ware quality, and indicate the need for refactoring. We observed that for Samba, MySQL,

and Blender the number of nodes in cycles increases linearly with time, for OpenSSH, Bind,

SQLite, and Vsftpd the number remains approximately constant with time, whereas for

VLC and Sendmail there is no clear trend. For MySQL, a sudden increase in number of

nodes in cycles is noticeable in version 5.0 (Oct. 2005); on further investigation we found

that newly-added functions in the InnoDB storage engine code form strongly connected

components in the graph, leading to an increase in the number of nodes in cycles. For rea-

sons mentioned above, even a constant number of nodes in cycles (let alone an increasing

one) is undesirable.

Graph diameter. From a maintenance standpoint, graphs of high diameter are

undesirable. As the diameter measures distance between nodes, graphs with large diameter

are more likely to result in deep runtime stacks, which hinder debugging and program

understanding. As shown in Table 5.1 (columns 10 and 11) and in Figure 5.5, we notice

that for our programs the diameter tends to stay constant or vary slightly, and the typical

value range (10–20) is similar across all programs.

Assortativity. As explained in Section 5.3.1, high values of assortativity indicate

that high-degree nodes tend to be connected with other high degree nodes; low assortativity

values indicate that high-degree nodes tend to connect with low-degree nodes [123]. As

shown in Table 5.1 (columns 12 and 13) and in Figure 5.6, we notice that all the values

of assortativity for all the programs are negative, which implies that, similar to biological

networks, software networks exhibit disassortative mixing, i.e., high degree nodes tend to

connect to low degree nodes and vice versa.
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In Firefox, low assortativity stems from code reuse. Mozilla has its own function

libraries for, e.g., memory management, and these functions were used by many other nodes.

As a result library functions and modules exhibit very high degrees, and connect to many

low degree nodes, hence contributing to low assortativity. In the future, we intend to further

investigate the relationship between assortativity and code reuse.

Edit distance. This metric, as defined in Section 5.3.1, captures the dynamic of

graph structure changes, i.e., how much of the graph topology changes with each version. In

Figure 5.7 we show how the graph edit distance changes over time. We find the same pattern

for all programs: after a steep rise, the edit distance plateaus or increase slightly, i.e., is a

step-function. This observation strengthens the conclusions of prior research [160], namely

that software structure stabilizes over time, and the only tumultuous period is toward the

beginning. We found that these steep edit distance rises are due to major changes and they

indicate that software has reached structural maturity. For example, the pivotal moment

for Samba is release 1.9.00 (Jan 22, 1995), where 131 modification requests were carried out,

whereas for the versions prior to 1.9.00, the average number of modification requests per

release was 15. We also computed the eLOC difference for release 1.9.00 and found it to be

2kLOC, less than the 3kLOC average of the previous releases, which shows how graph-based

metrics can reveal changes that would go undetected when using LOC measures.

Modularity ratio. This metric reveals whether projects follow good software en-

gineering practice, i.e., whether, over time, the cohesion/coupling ratio increases, indicating

better modularity. This turned out to be the case for all programs, except Firefox version

1.5 (see bottom of Figure 5.8, and Figure 5.10; we show VLC, Blender, MySQL and Firefox
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in a separate figure because we used modularity ratio for prediction).

Discussion. We are now in a position to answer the questions posed at the be-

ginning of this section. We have observed that indeed, software structure is surprisingly

similar across programs, in absolute numbers (see the similar ranges for average degree,

clustering coefficient, graph diameter), which suggests intrinsic lower and upper bounds on

variation in software structure. There are also similarities in trends and change patterns

(cf. edit distance, clustering coefficient, modularity ratio) which suggest that programs

follow common evolution laws. For those releases where graph metrics change significantly,

we found evidence that supports the “pivotal moment” hypothesis. For example, in Fire-

fox, we find significant changes in average degree, clustering coefficient, and edit distance

for release 2.0 (Oct. 2006); indeed, release notes confirm many architectural and feature

enhancements introduced in that version. Similarly, for OpenSSH we found that one such

moment was release 2.0.0beta1 (May 2000), a major version bump from prior release (1.2.3),

that incorporated 143 modification requests, whereas the average modification requests per

release until that point was 27 and this change is reflected in significant change of values

for clustering coefficient, edit distance, and assortativity metric. This evidence strengthens

our argument that graph metrics are good measures that can reveal events in evolution.

So far our discussion has centered on changes in structural (graph) metrics and

understanding how software structure evolves. We now move on to discussing how structural

metrics can be used to predict non-structural attributes such as bug severity, effort, and

defect count.
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5.5 Predicting Bug Severity

We present a novel approach that uses graph-based metrics associated with a

function or module to predict the severity of bugs in that function or module. When a

bug is reported, the administrators first review it and then assign it a severity rank based

on how severely it affects the program. Table 5.2 shows levels of bug severity and their

ranks in the Bugzilla bug tracking system. A top priority for software providers is to not

only minimize the total number of bugs, but to also try to ensure that those bugs that do

occur are low-severity, rather than Blocker or Critical. Moreover, providers have to do this

with limited numbers of developers and testers. Therefore, a bug severity predictor would

directly improve software quality and robustness by focusing the testing and verification

efforts on highest-severity parts.

We use NodeRank to help identify critical functions and modules, i.e., functions

or modules that, when buggy, are likely to exhibit high-severity bugs. As discussed in Sec-

tion 5.3.1, NodeRank measures the relative importance of a node—function or module—in

the function call or module collaboration graphs, respectively. By looking up the NodeRank,

maintainers have a fast and accurate way of identifying how critical a function or module

is. We now state our hypothesis formally:

H1: Functions and modules of higher NodeRank will be prone to bugs of higher

severity.

Data set. We used six programs: Blender, Firefox, VLC, MySQL, Samba, and

OpenSSH for this analysis. We collected the bug severity information from bug reports. For
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Bug Severity Description Rank
Blocker Blocks development test-

ing work
6

Critical Crashes, loss of data, se-
vere memory leak

5

Major Major loss of function 4
Normal Regular issue, some loss

of functionality
3

Minor Minor loss of function 2
Trivial Cosmetic problem 1
Enhancement Request for enhancement 0

Table 5.2: Bug severity: descriptions and ranks.

each bug report we collected the patches associated with it and from each patch we found

out the list of functions that were changed in the bug fix. Therefore, we have information

about how many times a function has been found buggy, and what the median severity of

those bugs was.

Results. We were able to validate H1 for our study. We correlated the median

bug severity of each function and module with its NodeRank. The results are shown in

column 2 of Tables 5.3 (for functions) and 5.4 (for modules). As a first step, we focus on

nodes with a NodeRank in Top 1% since bug severity for functions and modules exhibit a

skewed distribution where Top 1% of the nodes are affected by majority of the bugs. Note

that for sizable programs such as Firefox, the number of nodes exceeds 25,000, hence even

Top 1% can mean more than 250 functions. We find the correlation between NodeRank and

BugSeverity to be high: 0.6—0.86. This suggests that NodeRank is an effective predictor of

bug severity, and can be used to identify “critical” functions or modules. We have also com-

puted correlation values between function bug severity and standard software engineering
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quality metrics (cyclomatic complexity2, interface complexity3). As can be seen in columns

3–4 of Table 5.3 we found these values to be close to zero, meaning that these metrics are

not effective in identifying critical functions.

The node degree is not a good predictor of bug severity. We investigated

if the node degree could be just as good a severity predictor as the NodeRank. The answer

was no. We compute the correlations between bug severity and node in- and out-degrees.

The results are shown in Table 5.3, columns 5–6 (functions), and Table 5.4, columns 3–4

(modules); note how in- and out-degrees are poor bug severity predictors.

We also compute the NodeRank–BugSeverity correlation for the remaining 99%

of the nodes and found similar trends. As expected, in the lower end of the NodeRank,

there is significant statistical noise, which makes estimating a correlation coefficient difficult.

However, there is definitely a clear high level trend between NodeRank and BugSeverity

even in the absence of a well-defined linear correlation. Overall, our work suggests a useful

practical approach: in a resource-constrained testing and verification setting, one should

start with the nodes with high NodeRank value.

To illustrate this correlation, in Figure 5.9 we present an excerpt from Firefox’s

call graph. Within each node (function) we indicate that node’s NodeRank, as well as the

average BugSeverity for past bugs in that function. As we can see, verification efforts should

focus on functions free () and idalloc (), as their NodeRanks are high, which indicates that

the next bugs in these functions will be high-severity, in contrast to functions arena ralloc ()

and huge ralloc () that have low NodeRanks and low BugSeverity.
2McCabe’s cyclomatic complexity is the number of logical pathways through a function [104].
3Computed as the sum of number of input parameters to a function and the number of return states
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Figure 5.9: Firefox call graph and bug severity (excerpt).

Program NodeRank Cyclom. Interface In Out
complex. complex. degree degree

Blender 0.60 0.07 0.17 0.10 0.05
VLC 0.83 0.19 -0.06 -0.09 -0.003
MySQL 0.77 -0.05 -0.11 -0.06 -0.06
Samba 0.65 -0.207 -0.19 0.23 -0.06
OpenSSH 0.86 0.003 0.12 0.04 -0.34
Firefox 0.48 0.16 -0.28 0.18 -0.26

Table 5.3: Correlation of BugSeverity with other metrics for Top 1% NodeRank functions
(p-value ≤ 0.01).

5.6 Predicting Effort

A leading cause of high software maintenance costs is the difficulty associated

with changing the source code, e.g., for adding new functionality or refactoring. We

propose to identify difficult-to-change modules using the novel module-level metric called

Modularity Ratio, defined in Section 5.3. Intuitively, a module A’s modularity ratio, i.e.,

Cohesion(A)/Coupling(A) indicates how easy it is to change that module. To quantify

maintenance effort, the number of commits is divided by the churned eLOC for each mod-

ule in each release—-this is a widely used metric for effort [15]. Therefore, our hypothesis

is formulated as follows:

from that function [142].
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Program NodeRank In Out
degree degree

Blender 0.79 -0.04 -0.0008
VLC 0.82 0.21 -0.11
MySQL 0.73 -0.20 -0.24
Samba 0.78 -0.02 -0.10
OpenSSH 0.65 -0.22 -0.19
Firefox 0.704 -0.17 -0.38

Table 5.4: Correlation of BugSeverity with other metrics for Top 1% NodeRank modules
(p-value ≤ 0.01).
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Figure 5.10: Change in ModularityRatio with change in Effort ; x -axis represents time.

H2: Modules with higher ModularityRatio have lower associated maintenance

effort.
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Data set. We used four programs, Blender, Firefox, VLC and MySQL for this

analysis. The effort data for these programs is available from our prior work [15].

Results. We were able to validate H2 for our study. We found that, as the

ModularityRatio increases for a module, there is an associated decrease in maintenance

effort for that module, which means the software structure improves. In Figure 5.10 we

plot the results for each program. The x -axis represents the version; for each version, in

gray we have the mean modularity ratio, and in blue we have mean maintenance effort. We

ran a Granger causality test4 on the data in the graph. We use causality testing instead

of correlation because of the presence of time lag; i.e., our hypothesis is that changes in

modularity ratio for one release would trigger a change in effort in one of the future releases.

As shown in Table 5.5, we obtained statistically significant values of F-prob for the Granger

causality test on modularity ratio and effort.5 The lag value indicates that a change in

modularity ratio will determine a change in effort in the next release (Blender, Firefox) or

in three releases (VLC).

5.7 Predicting Defect Count

Intuitively, a stable, highly cohesive development team will produce higher-quality

software than software produced by a disconnected, high-turnover team [23]. Therefore,

we are interested in studying whether stable team composition and structure will lead to

higher levels of collaboration, which in turn translates into higher quality software. We are
4The Granger causality test is a statistical hypothesis test for determining whether one time series is

useful in forecasting another.
5We cannot claim statistically significant results for MySQL due to small sample size; effort values for

only 4 versions of MySQL were available.
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Program Lag F-prob
Blender 1 0.0000015
VLC 3 0.3673
Firefox 1 0.00056

Table 5.5: Granger causality test results for H2.

in a good position to characterize team stability by looking at the evolution of developer

collaboration graphs. To measure how much graph structure changes over time we use

the edit distance metric defined in Section 5.3.1. Concretely, we hypothesize that periods

in software development that show stable development teams will result in periods of low

defect count. To test this, we form the following hypothesis:

H3: An increase in edit distance in Bug-based Developer Collaboration graphs

will result in an increase in defect count.

Data set. We used the Firefox and Eclipse bug reports to build the developer

collaboration graphs. For Firefox, we analyzed 129,053 bug reports (May 1998 to March

2010). For Eclipse, we considered bugs numbers from 1 to 306,296 (October 2001 to March

2010).

Results. We were able to validate H3 for our study. From bug reports, we

constructed Bug-based Developer Collaboration graphs as explained in Section ??. We

constructed these graphs for each year, rather than for each release, as some releases have

a small number of bugs. Next, we computed the graph edit distance from year to year and

ran a correlation analysis between edit distance for year Y and defect count at the end of

year Y . We found that there is a strong positive correlation between these two measures,
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as shown in Figure 5.11. This shows that team stability affects bug count; our intuition

is that, when developers collaborate with people they have worked with before, they tend

to be more productive than when they work with new teammates. A similar finding has

been reported by Begel et al. [11] for commercial work environments: working with known

teammates increases developer productivity. Although open source projects lack any social

structure and central management, team collaboration does affect software quality.

Bug-tossing based collaboration is a better defect predictor than commit-

based collaboration. We have also tested the same hypothesis with commit-based devel-

oper collaboration graphs; however we did not find any correlation between edit distance

in those graphs and effort, which suggests that bug-tossing graphs are more useful than

commit-exchanges for studying developer relationships in open source projects.

 0
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(a) Eclipse, correlation = 0.504
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Figure 5.11: Change in collaboration graph Edit Distance v. Defect Count.
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5.8 Contribution Summary

In summary, our main contributions are:

• We used graphs to model software at two different levels: product level (function-

level interaction) and module-level interaction) and process level (bug-based developer

collaboration and commit-based developer collaboration).

• We studied the evolution of the graph models of these programs over one to two

decades. We found that these graphs exhibit some significant structural differences,

and some fundamental similarities. Specifically, some graph metrics vary significantly

among different programs, while other metrics captures persistent behaviors and reveal

major evolutionary events across all the examined programs.

• We demonstrated how our graph metrics can be used to suggest, infer, and predict

important software engineering aspects. In particular, apart from helping researchers

construct predictors and evolution models, our findings can help practitioners in tasks

such as: identifying the most important functions or modules, prioritizing bug fixes,

estimating maintenance effort

5.9 Conclusions

In this chapter we have shown how coupling Network Science with Software Evo-

lution opens new opportunities in software engineering research and practice. We have

provided a graph construction method and a set of metrics that capture the structure and

evolution of software products and processes. Using a longitudinal study on large open
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source programs, we have demonstrated that source code-based graph metrics can reveal

differences and similarities in structure and evolution across programs, as well as point out

significant events in software evolution that other metrics might miss. We have also shown

that graph metrics can be used to predict bug severity, maintenance effort and defect-prone

releases.
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Chapter 6

Quantifying Contributor Expertise

and Roles

Determining a contributor’s expertise, ownership and more generally, individual

importance, are basic questions for assessing the impact of a contributor in a software

project. We argue that currently there is no systematic way to define and evaluate con-

tributor expertise and impact. So far, most previous efforts have used either very narrow,

or overly broad definitions and metrics. In this chapter, we operationalize contributor ex-

pertise and role. First, we revisit currently-used expertise metrics and we show that they

are not very suitable as expertise indicators. The crux of the problem is that these met-

rics are agnostic to contributor roles, and if we simply combine them, we bundle many

different aspects creating a veil of ambiguity. Second, we propose to evaluate expertise and

contribution along clearly defined roles, which captures the multiple facets of a software

project. Third, we propose an intuitive graph-based model that is based on the contributor
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collaboration interactions. Our model captures the hierarchical structure of the contributor

community in a concise yet informative way. We demonstrate the usefulness of the model in

two ways: (a) it provides the framework for identifying interesting properties of the struc-

ture and the evolution of the contributor interactions, and (b) it can help us predict the

roles of contributors with high accuracy (up to 76%). We substantiate our study using two

large open-source projects, Firefox and Eclipse, with over 20 cumulative years of develop-

ment and maintenance data. Our systematic approach can clarify and isolate contributor

role and expertise, and shed light into the complex dynamics of contributor within large

software projects.

6.1 Introduction

We use several questions to illustrate the motivation for our work in this chapter: Who are

the most “valuable” (competent, efficient) developers in a project? Who are the best bug

fixers? Who knows best who the right person is to fix a bug? The overall problem involves

determining and assessing the contribution and the expertise of developers in a software

project. Specifically, the input to the problem is archived data of contributor interactions,

whose nature and level of detail can vary between projects. The requirement is to answer

questions regarding expertise, contribution and overall impact of a developer. For example,

only a few large open source projects like Mozilla and Eclipse record structured bug activity

information, e.g., list of all developers a bug was assigned to, who triaged a bug, and who

ultimately fixed it.

Previous work. Despite the significant number of studies on assessing contribu-
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tor expertise, authorship, and ownership in software projects, very few studies have really

focused on the problem at hand. In more detail, some studies evaluate metrics to deduce

expertise [174, 7], which is slightly different from our focus. Other studies examine expertise

as an absolute value [113, 52, 111, 22, 136], which is a different aspect of developer. Simi-

larly, although contributor collaboration as a form of social networking has been studied in

software engineering [20, 21, 139, 138, 107, 70], extracting a hierarchy structure from this

collaboration has not been investigated so far. We discuss previous work in more detail in

Section 8.4.

An example. The following example can provide some intuition of what we are

trying to achieve. Let us consider the case of two contributors D1 and D2 from the Mozilla

community.1 Using widely-used metrics, we find that D1 and D2 have roughly the same

percentage of bugs fixed from those assigned to them, with 49.15% and 53.09% respectively.

Both D1 and D2 have similar seniority, having been with the project for 8 and 10 years,

respectively. These numbers would lead someone to believe that D1 and D2 exhibit com-

parable expertise and play similar roles in the project. However, upon closer examination,

with more refined role definitions, we find that D1 serves the role of triager (an individual

who assigns a new bug to a developer) while D2 served the role of a patch tester (an indi-

vidual who reviews and tests patches submitted for fixing a bug). In fact, our approach is

able to make this distinction, as we discuss later.

Contributions. In this chapter, we operationalize (i.e., develop a systematic

approach for defining and determining) contributor expertise and impact. We start by
1We withhold actual names for preserving anonymity.
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revisiting the whole process starting from what we want to capture and how we can capture it

systematically. Our key novelty is that we start from defining roles that capture fundamental

software development functions and then build our framework to assess contributions along

these roles.

Our main contributions can be summarized as follows:

a. Quantifying the inadequacy of current metrics. We revisit previous

expertise metrics: we show that each metric captures a local notion of expertise by quanti-

fying a specific development activity (e.g., LOC added) but when put together, they fail to

capture a global notion of expertise (Section 6.2.2). The crux of the problem is that these

metrics are agnostic to contributor roles, and if we simply combine them, we bundle many

different aspects creating a veil of ambiguity. In fact, despite spending significant effort, we

were unable to define expertise in a meaningful way using these metrics.

b. Defining developer roles. We propose to assess expertise and contribution

along roles which clarifies the confusion. For example, an expert bug fixer is not necessarily

a expert bug triager, but both are equally important for a project. We introduce a set of

roles: Patch tester, Assist, Triager, Bug analyst, Core developer, Bug fixer, Patch-quality

improver. We also provide ways to define these roles rigorously, assuming that we have

access to the Role profile, which only some projects maintain (Section 6.3).

c. Proposing an intuitive graph-based model of developer contribution.

We develop graph-based model that captures concisely useful information, and we refer to

it as Hierarchical Contributor Model (HCM). A key observation is that there exists a

clique that consists of the highest degree nodes, which is a natural choice for the core of the
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graph. With this clique as its first tier, the model identifies a limited number of tiers (3-4 in

total) in graphs with up to 10K contributors, as as we see in figure 6.6 (Section 6.4). HCM

concisely represents the contributor interaction, in a way that captures hierarchy, role and

“importance” of contributors, which is hard to do with previously defined expertise metrics.

We then show how one can benefit from our model: we use it as a framework for identifying

interesting properties of the structure and the evolution of the contributor interactions, and

show that it can even help us predict the roles of contributors (Section 6.5).

Scope. The work is motivated by both practical software engineering concerns

and the need to model software development as an evolving complex systems. Our study

can help distinguish different types of people and for different functions. First, managers

may want to assess developer contribution in objective ways, for say rewarding key people;

the counterpart in the open-source world is “promoting” developer and give them commit

privileges. Second, supervising developers can use our approach to identify weaknesses in

the development process, e.g., single nodes of failure, imbalance in the flow of development.

Finally, from a software maintenance perspective, we want to address a long-standing chal-

lenge: detecting intrinsic emerging patterns in large long-term software projects [108, 1, 140].

6.2 Data Collection and Processing

6.2.1 Data Collection

We used data from the Eclipse and Firefox projects for our study. Our approach

makes use of information from source code, patches, change logs, and bug reports. We
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Figure 6.1: Hypergraph extraction for characterizing roles of contributors.

analyzed the entire histories of these applications, from inception (2001 for Eclipse, 1998

for Firefox) up to April 2010. We use source code information, available in the version

control system, to construct source code-based expertise profiles. For each source file, we

extract its contributors along with the timestamps of their contributions, and diffs (patches)

for each commit. For source code, we analyzed Eclipse versions 1.0 to 3.6.1; for Firefox we

analyzed versions 0.8 to 3.6. We use bug report information, available in the bug tracker,

to construct bugfix-based expertise profiles. For each bug report, we extract the sequence

of assignees and comments. We considered Eclipse Platform bug numbers 1 to 306,296

and Firefox bug numbers 37 to 549,999 (as recorded in Mozilla’s Bugzilla bug tracker). In

Table 6.1, we present a quick overview of the data we collect and their respective usage. In

Figure 6.1 we show the nodes and edges we extract from the multi-mixed graph (explained

in Section 2) for our analysis in quantifying contributor role. Formally, we can represent

the hypergraph extracted as shown in Figure 6.1 as:
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{(v1, v2)|(v1, v2) ∈ GInterRepoDep|v1 ∈ vcontributor ∧ v2 ∈ (vbug ∨ vfunc ∨ vmod ∨ vcontributor)}

6.2.2 Expertise Profiles and Metrics

In this section, we introduce expertise profile and provide details on the process

and metrics we used to construct these profiles for each contributor in our examined projects.

For each member D of a project, we define two kinds of expertise profiles: a bug-fixing

profile, and a source code profile. The rationale for using two profiles is to capture the two

major ways of contributing to project—bug-fixing or development—especially in open source

projects. Moreover, many large open source projects use separate systems for version control

and bug tracking, so we had to perform entity resolution to determine when version control

id CD and bug tracker id BD correspond in fact to the same individual D (Section 6.6).

We define the bug-fixing expertise profile of a contributorD as a tuple (bugcountD,

bugsevD, bugseniorityD, bugsfixedD) where bugcountD is the total number of bugs D has

been associated with, i.e., D was assigned to fix at some point in time; bugsevD is the

average severity score of all bugs D has fixed;2 bugseniorityD represents the first and last

times D has fixed a bug, as recorded in the bug tracker, and bugsfixedD is the percentage

of bugs D could fix, relative to the total number of bugs assigned to D.

We define the source-code expertise profile of a contributor D as a tuple:

(codelinesD, filesD , codeseniorityD, ownershipD) where the contents are defined as fol-

lows: codelinesD is the number of lines of code D has committed—we identify all the
2Firefox and Eclipse use a 1-to-7 scale for bug severity (1=Enhancement, 2=Trivial, 3=Minor, 4=Normal,

5=Major, 6=Critical, 7=Blocker).
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Source Raw Data Expertise Role HCM
Profile Profile

(Section 6.2) (Section 6.3) (Section 6.4)
Contributor ID X X X

Timestamp X X X
Severity X

Bug Task - triaged X
tracker Task - tested X

(Bug report, Task - assisted X
Bug activity) Task - analyzed X

Type (defect, enhancement) X

Source Committer ID X X X
Code Log message X

Repository LOC added X
Timestamp X X X

(Commit Files changed X X X
Logs) Bug/Enhancement ID X

Table 6.1: Data collection sources and uses.

patches D has submitted, and from each patch we extract the number of source code lines

added or changed. The rationale for using this metric is that the more source code D has

contributed, the higher D’s expertise level is; filesD is the number of files D has worked on.

The rationale for using this metric is that the more files D has worked on, the higher D’s ex-

pertise level is. We define codeseniorityD as the time difference D’s first and last commits,

as recorded in the project’s version control system. Note that if D has only committed once,

in our definition D’s seniority is zero. A contributor to a software module is someone who

has made commits to the module. To quantify the level of involvement between a contrib-

utor D and a module C, we define ownership ratio as the ratio RDC = LOCcommittedD(C)
LOCcommittedtotal(C) ,

i.e., the percentage of lines of code committed by D to C relative to the total number of

lines of code committed to C. Note that our definition of ownership is different from Bird

164



www.manaraa.com

et al.’s [22] (which uses the proportion of number of commits) because in the projects we

studied we found very low correlation, 0.1403, between the number of commits and the

lines of code committed. For each module, based on the ownership ratio RDC we define D’s

ownership profile (owner, major or minor contributor) in the following table; the first line

indicates the ratio, the second line indicates the profile.

RDC < 5% 5% ≤ RDC < Highest Highest

Minor contributor Major contributor Owner

We have chosen the 5% cut-off based on the cumulative distribution function

(CDF) and the cut-off point might vary from project to project.

6.2.3 Correlation Between Expertise Attributes

We now present statistical evidence that our expertise attribute selection is precise

(i.e., all constituent attributes of expertise profiles in Sections 6.2.2 and 6.2.2 are relevant

and there are no redundant attributes). Correlation-based feature selection is a standard

machine learning method for filtering out features (attributes) which have strong correlation

between them, thus retaining only those features that are independent of each other [62].

We selected a wide range of features (4 for bug fixes, 6 for source code).3 To ensure that we

only select representative features we ran a Pearson’s correlation test between all pairs of

source-code based and bug-fix based expertise attributes. We report the results in Table 6.3.

We found low pairwise correlation between most features at a statistically significant p-value

of 0.01, hence we conclude that, for the projects we considered, feature selection is precise.
3We show the correlations among three types of ownership as explained in Section 6.2.2.
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Figure 6.2: Bugfix-induced and source code-induced seniority.

6.2.4 An Empirical Study of Contribution

With the expertise profiles in hand, we now proceed to conduct an empirical study

to understand how the contribution profile of contributors in a project can help characterize

various facets of software development.

1. When do contributors join a project, and how long they stay associated

with a project, for fixing bugs and developing code?

Figure 6.2 shows the cumulative distributions for bugfix- and source code-based se-
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niority in our examined projects. In each graph, the x-axis shows seniority, in years,

and the y-axis shows the cumulative number of contributors; each (x, y) pair on the

graph shows the number of contributors y that have seniority at most x years.

Figures 6.2(a) and 6.2(b) show bugfix-induced seniority distributions in Eclipse and

Firefox. Eclipse has had 8856 bug fixers over its lifetime; 80.79% of those have seniority

less than one year; Firefox has had 19286 bug fixers over its lifetime; 75.18% of those

have seniority less than one year. These values are quite interesting in that they reveal

the high turn-over in these projects. Figures 6.2(a) and 6.2(b) show source code-based

seniority distributions in Eclipse and Firefox. Eclipse has had 210 contributors over

its lifetime; 58.57% of those have seniority less than one year; Firefox has had X bug

fixers over it lifetime; 58.54% of those have seniority less than one year. An interesting

aspect, when comparing the bugfix- with the source code-induced seniorities is the

shapes of their cumulative distribution curves. The flatter source code seniority curves

indicate lower source-code turnover, meaning that contributors who work on source

code tend to be attached to the project for longer than contributors who work on bug

fixes.

2. What is the contribution distribution in large projects?

We report five relevant observations about the contributor contribution distribution

for Firefox and Eclipse:

• On average, 16.26% and 21.91% contributors for Firefox and Eclipse respectively

work on the same file.
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• On average, a contributor works on 2.58% and 3.706% files for Firefox and Eclipse

respectively during his lifetime.

• 14.26% files in Firefox and 11.71% files in Eclipse have a single contributor work-

ing on it.

• 27.56% and 18.15% contributors for Firefox and Eclipse respectively have been

owners of at least one file.

• 16.72% and 7.32% contributors for Firefox and Eclipse respectively have been

authors of at least one file.

3. How defect prone are files maintained by their original authors?

Defect density of files maintained 4 by the original authors of the file are lower than

the defect density of files that do not have an author or not maintained by the author.

Our hypothesis H1 is that files maintained by original authors are less prone to error

compared to other files. We accept H1 at 1% significance level (t-value = 3.234 for

Firefox and t-value = 2.176 for Eclipse) after performing a Welch’s t-test5 on the

defect density of the two types of files - one maintained by original authors (mean

value = 0.0026 for Firefox and 0.1637 for Eclipse) and the other not maintained by

authors (mean value = 0.0319 for Firefox and 0.2316 for Eclipse).

4. Are files with an owner less prone to defect compared to files with no

4Source code files contain author information (name and/or email ID) as *Original Authors*. If the same
person later commits to the file either during bug fix or feature enhancement, we consider that the file is
maintained by the author.

5Welch’s t-test [166] returns a t-value for a fixed level of statistical significance and the mean values of
the sample sets. In our study we only consider 1% statistically significant t-values, to minimize chances of
Type I error. According to standard t-test tables, the results are statistically significant at the 1% level if
t-value ≥ 2.08.
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owner?

Our hypothesis H2 is that files that have an owner are less prone to error compared

to other files with only minor contributors. We accept H2 at 1% significance level (t-

value = 2.794 for Firefox and t-value = 2.612 for Eclipse) after performing a Welch’s

t-test on the defect density of the two types of files: one which has an owner (mean

value = 0.0042 for Firefox and 0.0031 for Eclipse) and the remaining which do not

have any owner or major contributor (mean value = 0.0747 for Firefox and 0.1064 for

Eclipse).

5. How does the contribution distribution for a module affects the defect den-

sity?

Our hypothesis H3 is that defect density of a module is correlated with the number

of minor contributors to the file. We found a high correlation (p-value < 0.01 for all

experiments) (0.773 in Eclipse and 0.612 in Firefox) between the number of minor

contributors for a module and the defect density of a module. However, we found a

low correlations between the defect density of a module and the number of owners

(0.051 in Eclipse and 0.118 in Firefox) and number of major contributors (0.427 in

Eclipse and 0.388 in Firefox) in a file. This result is significant because previous

studies on open source projects reported that total number of contributors working

on a module is highly correlated with the defect density of the module. On the other

hand, we show that number of minor contributors affect defect density irrespective of

the total number of contributors.
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6. Do bugfix-induced seniority correlate with the number of bugs fixed and

the average severity of those bugs?

A common belief in software development is that senior contributors in a project

will fix more bugs, will fix bugs of higher severity and will fix a higher percentage

of bugs that are assigned to them when compared to junior contributors. However,

this conjecture has never been empirically studied. We found that seniority correlates

with average bug severity and total number of bugs involved with, but does not

correlate with the percentage of bugs fixed by a contributor (refer to rows 3 and 8

in Table 6.3). Note that although the correlation values are smaller compared to the

standard scale for reporting positive correlation, in statistics the interpretation of a

correlation coefficient depends on the context and purposes [38]. As shown in Fig 6.2,

75-80% of contributors have less than 1 year of project involvement. To test this

hypothesis better, we divide the contributors in to two groups based on seniority: (1)

contributors whose seniority is less than or equal to 1 year, and (2) contributors whose

seniority is greater than 1 year. We form two sub-hypotheses: H41 is that the average

bug severity of bugs fixed by contributors in category (2) is higher than the average

bug severity of the bugs fixed by contributors in category (1). We accept H41 at 1%

significance level (t-value = 4.361 for Firefox and t-value = 2.485 for Eclipse) after

performing a Welch’s t-test on the average bug severity of contributors in categories

(1) and (2). H42 is that the number of bugs fixed by contributors in category (2)

is higher than the number of bugs fixed by contributors in category (1). We accept

H42 at 1% significance level (t-value = 2.253 for Firefox and t-value = 2.682 for
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Eclipse) after performing a Welch’s t-test on the number of bugs fixed by contributors

in categories (1) and (2).

6.3 Contributor Roles

In software projects, an individual’s contributions involve more than adding code

or fixing bugs. In this section, we operationalize seven roles that capture several aspects of

software engineering. Although we do not claim that they capture all facets of open source

software engineering, we argue that they are a good start towards a systematic framework,

that we develop here. Role operationalization is based on the nature and timing of developer

contributions. For now, we do not assign any threshold to the frequency of contribution

to mark a contributor as an active participant for a specific role; in the future, we intend

to vary the threshold and evaluate its effect on our analysis.6 The roles are not mutually

exclusive, and a contributor can serve multiple roles during her association with a project.

Next, we define each of these roles that form the bug- and source-code based profiles.

1. Triagers: contributors who triage bugs are indispensable in large projects that re-

ceive hundreds of new bug reports every day [17]. A triager’s role ranges from marking

duplicate bugs, to assigning bugs to potential contributors, to ensuring that re-opened

bugs are re-assigned, and to closing bugs after they have been resolved. In our case,

by triaging we refer to contributors who inspect the bug report and identify potential

bug fixers (i.e., other contributors who could fix the bug). As shown in our previous

work [17], choosing the right bug fixer is both important and non-trivial: when a
6We list this as a potential threat to validity in Section 6.6.
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bug assignee cannot fix the bug, the bug is “tossed” (re-assigned), which prolongs the

bug-fixing process. Jeong et al. [76] introduced the concept of tossing graphs, where

nodes represent developers and edges represent bugs being tossed; a bug’s lifetime

(assignment, tossing, and fixing) can be reconstructed from its corresponding tossing

path in the tossing graph. We identify a triager as the first contributor in the tossing

path to “assign” a bug to another contributor. Note that bugs with assignee status

“Nobody’s OK to work on it” might have contributors assigning themselves as the

bug-fixer. We do not consider self-assignment as triaging.

2. Bug analysts: contributors who help in analyzing the bugs play an important role in

the bug-fix process. In our study we label contributors as bug analysts if they perform

one of the following decision-making tasks: (1) prioritizing bugs, (2) deciding when

to assign “won’t fix” status to bugs, (3) labeling a feature enhancement for future

release, (4) identifying duplicate and invalid bugs, and (5) confirming a new bug as

a valid bug by reproducing the errors as per the description in the bug report. We

identify bug analysts from the activity page of a bug.

3. Assists: contributors who have found the right person to fix a bug at least once are

defined as assists in our model. This role captures the “who knows who knows what”

relationship in a social network. In our case, an assist is the second-to-last person

in the bug tossing path, i.e., D is an assist if D assigned the bug to a contributor E

(after it was tossed among other contributors) and E finally fixed the bug. Note that,

to identify assists, we only consider bugs whose the tossing path length is greater than

one.
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4. Patch tester: after a patch (potential fix) for a bug has been submitted, certain

contributors test the patch, to ensure that the bug has been correctly resolved. We

identify these contributors, i.e., patch testers, from bug report comment sections where

they report their results from testing the newly-submitted patch.7 Additionally, a

tester may also suggest ways of improving the code quality. Patch testers are identified

from the activity page and the comment section of a bug report where they are first

assigned as the patch-reviewer and in the next activity they report the test results with

often with suggestions for improvement. In our model, a patch tester is a developer

who has reported patch testing results at least once.

5. Patch-quality improvers: patch-quality improvers are contributors who help im-

prove the quality of patches submitted for fixing a bug by other contributors. These

improvements involve adding documentation, cleaning up the code, ensuring com-

pliance with coding standards, etc. We label a contributor D as a patch quality

improvers if we find that D modifies newly-submitted patches and the log message

contains strings such as “cleaned patch”, “added documentation”, “simplified string

definition”, “changed incorrect use of variable”, etc. Identifying such messages au-

tomatically for large source-code repositories like Firefox and Eclipse is a non-trivial

task. We used a text mining technique to extract such messages: (1) identify all log

messages that are submitted with the same bug-ID for the same file, (2) sort the log

messages chronologically, and (3) check if the log messages submitted after the initial

patch contain words like “added”, “changed”, “simplified”, “removed”, “reverted”,
7For example, Mozilla bug 50212 (https://bugzilla.mozilla.org/show_bug.cgi?id=50212) shows how

a contributor X plays the role of tester for contributor Y (comment 4).
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“replaced”, “rewrote”, “updated”, “renamed”, etc. In our model, a patch-quality im-

prover is a developer whose log messages contain the aforementioned keywords at last

once.

6. Core developers: we define a core developer as a contributor who has added new

code to the source code repository in response to a feature enhancement request or

has added code that does not correspond to a bug-fix. This way we ensure separation

between contributors who perform adaptive/perfective maintenance and those who

perform corrective maintenance (bug-fixers, described below).

7. Bug fixers: we tag a contributor D as a bug-fixer if D has added code for fixing

a bug. In other words, a bug fixer performs corrective maintenance. A commit is

identified as corrective maintenance by cross-referencing the bug ID associated with

the log message with the bug type (i.e., defect or enhancement) in the bug database.

Analysis of role distributions: to illustrate how contributors serve multiple roles

in a project, we provide three analyses. In Figure 6.3 we show the absolute number of

contributors (y-axis) who have served one or more roles (x-axis); as expected, the bulk

of contributors have only served one role, with much smaller numbers serving all 4 bug-

based roles or all 3 source-based roles. In Figure 6.4 we show the distribution and overlap

of roles, in percentages, for Firefox; we now proceed to explain the graph. For example,

among those developers who have ever served source-based roles: 17% have only served as

core developers, 32% have served as both core developers and bug fixers, and 10% have

served all three roles. In Figure 6.5 we characterize the frequency distributions for each
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role, across all contributors for that role. Each candlestick represents the minimum, first

quartile, second quartile, third quartile and maximum; the black bar is the median. For

example, for core developers in Eclipse (leftmost candlestick in Figure 6.5(a)): the minimum
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Figure 6.5: Frequency of contribution for each role.

number of role servings was 9, the median number was 275, and the maximum number was

512.

Role profile: we define two kinds of role profiles of a contributor D: bug-

based role profile and source code-based role profile. Bug-based role profile is a tuple

〈Triager,BugAnalyst, Assist, PatchTester〉 and source code-based profile is a tuple

〈CoreDeveloper,BugFixer, PatchQualityImprover〉. Each metric can have a integer

value; if the value is zero, it indicates that the contributor have never served the role or
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else any non-zero value would indicate number of times she has served the role (frequency

of contribution). For example, bug-based role profile (D) = 〈2, 0, 3, 5〉 would imply that

contributor D has served the role of triager twice, never served the role of a bug analyst,

served the role of an assist 3 times and the role of a patch tester 5 times.

6.4 HCM: our Graph-Based Model

With the contributor role definitions in hand, we now proceed to defining a hierar-

chical contributor model (HCM) that emerges from the collaboration among contributors in

the course of source- and bug-based collaboration. The model has several key advantages:

(a) it captures the hierarchy and “importance” of contributors, in a way that was hard or

impossible to do with conventional expertise metrics, (b) we show how, by using our model,

we can in fact infer roles and contributions with relatively high accuracy using raw data:

source-code repository and bug database, without the need of the role profiles, which is not

always available for all software projects, (c) it captures the stability of developer interac-

tion. Note that the model we develop here is inspired by our earlier work on identifying

structure in the Internet topology [147], as we further discuss in Section 8.4. The model is

based on two collaboration graphs: bug-based and source-code based collaboration graphs

(as defined in Section 2.2.1).

The emerging structure: hierarchy and tiers. We want to identify structure

in our two types of collaboration graphs. The graph mining literature offers many ways

to analyze graphs structure, e.g., in terms of clusters or importance. Given our interest in

identifying “importance” of contributors, we use the following insight: important contrib-
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utors are likely collaborating with many other contributors. With this in mind, we follow

the process below, which was also used successfully in a different context [147].

1. Determining the “center.” Intuitively, we want to identify the largest clique

with the highest degree nodes in the graph. The process starts from the highest degree

node, and includes nodes in order of decreasing degree, until no more nodes can be added

to the clique. We refer to the nodes in the clique as Tier 1, as shown in Figure 6.6.

2. Determining tiers recursively. Given the definition of tier 1, we define subse-

quent tiers using connectivity to the previous tier. Specifically, we use the following recursive

procedure: a node belongs in tier k if and only if it is connected with at least one node in

tier k − 1.

3. Distinguishing one-degree nodes. In an additional step, we add more informa-

tion to our model by reporting one-degree nodes (nodes with only one edge) within each

tier.

Compact and informative representation. The above process leads to a

compact representation of our graphs, as shown in Figure 6.6: the HCMs for bug-based

and source-code-based collaboration graphs. To convey more information, we introduce

two features. First, we use darker shades to indicate tighter connectivity internally within

each box: black signifies the clique, while the one-degree hanging nodes to the right are

white, which represents no connectivity. Second, the width of the edges between two tiers

is proportional to the number of edges across these tiers.

Why is this model useful? The advantage of the HCM lies in its simplicity and

the amount of information that it can “encode”: intuitively, one can say that it maximizes

180



www.manaraa.com

the ratio of information over model complexity. Some observations can be readily made by

examining the model: (a) there exists a clique of non-trivial size (12–27 or 0.26%–9.44% of

the nodes), (b) there are relatively few tiers, between 3–4 in our graphs, even though the

graphs have more than 10,000 nodes, (c) there is a non-trivial number of one-degree nodes

(12%, 24%, and 10%, for the graphs, except a really small one for Eclipse source-code),

and (d) many one-degree nodes connect to the tier 1 nodes8 One of the most important

properties of the HCM is discussed below, while we discuss uses of our model in Section 6.5.

The model structure is “aligned” with contributor expertise and con-

tribution. High-performing contributors tend to be in lower (numerically) tiers and thus

higher in the hierarchy. In Figure 6.7, we present the results of contributor expertise dis-

tribution across the various tiers formed for selected metrics. We find that tier 1 nodes

(the clique) have high-values of expertise attributes and the values decrease as we move

on from tier i to tier i + 1. In other words, tier 1 contributors are among the most active

and experienced contributors for a project. We argue that the tier of a contributor is a

good estimate of his expertise and contributions: a member of the clique is likely a senior

contributor, who has fixed many bug types, high-severity types, owns many files; conversely,

we expect a contributor from tiers 3–4 to be a junior contributor with low expertise. We

substantiate this claim in Section 6.5.

An interesting observation is that nodes in tier 2 are strongly connected with nodes

in tier 1. For example, in Firefox, 68.79% of the nodes in tier 2 connect to at least 74.07%
8In fact, in our graphs, we find that their assortativity is negative or around zero (between -0.3 and

0.011). Positive assortativity coefficient indicates that nodes tend to link to nodes similar degree. This
observation contradicts a natural inclination to assume that high degree nodes are in higher tiers, which
happens in some hierarchical systems. We also analyzed the degree distribution of the nodes and found that
there is no clear intuitive pattern, such as a power-law or other scale-free network properties.
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of the members of the clique (tier 1). We believe that this strong connectivity indicates two

collaboration traits: (1) tier 2 contributors work very closely with senior contributors for

maintaining the project, and (2) tier 2 contributors are stable9 members of the project.

Disconnected nodes. We use connectivity to establish our model, and we find that

more than 95% of the nodes form a large connected component, and thus represented in

our model. The remaining nodes (< 5%) are disconnected from this connected component,

and form mini-graph structures with 2–13 nodes each. We found that all these nodes

have seniority one year, which is the lowest, and their expertise profiles are low (e.g.,

bugseniority ≤ 2, bugcount ≤ 7, bugsev ≤ 1.44).

6.5 Using the HCM Model

In this section, we show how the HCM can help us conduct studies that can reveal

interesting properties in terms of structure and evolution of the collaboration relationships,

We also show how we can use the concise information encoded in the model to predict the

roles of contributors.

Based on the HCM, we study additional features pertaining to collaboration in-

tensity and HCM’s evolution in time, which reveal several interesting properties.
9It is important for managers in open source projects to identify which project members are stable. Our

techniques can help managers identify these stable contributors easily, as they are nodes with high in- and
out-degrees.
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Figure 6.7: Tier distribution range per expertise metric.
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Intensity of Collaboration

We refine our HCM by considering the intensity of the collaboration between

contributors, which we represent as a weight associated with their common edge. Here we

use the directed graph, as defined in the previous section.

Intense collaborations are within tier 1 and tier 2 nodes. We analyze

how strongly the graph is connected considering collaboration intensity. We define a weight

threshold tcut, which we use to filter out all the edges with weight w ≤ tcut. For tcut = 1,

72.77% nodes in Firefox and 64.93% of nodes in Eclipse become disconnected from the initial

HCM graph. We then increased our threshold tcut = 2, 3, . . . and observed an interesting

phenomenon. The original connected component shrinks significantly if we remove edges

with w < 3 for Firefox and w < 5 for Eclipse, but after that, even if we increase tcut, (till

tcut = 118 for Eclipse and tcut = 206), the connected component do not change. We find

that the connected component consists of contributors only from tier 1 and tier 2, which

are connected with high weight edges. This shows that the majority of collaborations take

place between the top two layers of the network model. This agrees with our results in

Section 6.4, where we found that apart from fixing bugs, contributors from these layers

serve multiple non-technical roles.

Detecting sub-project communities. We showed that the clique and nodes

from tier 2 form a community of intense interactions. Here, we want to find if there are

communities of contributors within a large project. The idea is that nodes working on a

sub-project and will be forming a community. So now, we focus on the nodes that were

isolated from the connected component in the process above with tcut = 3 for Firefox,
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and tcut = 5 for Eclipse. For Firefox, we find four communities are formed with 83.92%

(accounting for 23.31%, 11.46%, 18.72% and 30.41%) of the originally discarded nodes, while

the remaining nodes form significantly smaller graphs (3-14 nodes), or singletons or pairs.

These four larger communities have clustering coefficients between 0.34 and 0.62, which

indicates significant intra-cluster cohesion. Further analysis revealed that these communities

typically work on different components of the project. For example, in the community of

size 23.31% that we mentioned above, all the member nodes have worked on four common

components: Security, Preferences, Phishing Protection and Private Browsing. We repeated

the same process with Eclipse, and we found qualitatively different results. There is only one

such emerging community, with 57.03% of the initially discarded nodes. Furthermore, the

clustering coefficient for the nodes in the connected component is 0.02, which shows really

low cohesion. To explain this low cohesion, we looked at the profiles of the contributors and

we could not find a unifying theme, unlike the Firefox community.

Evolution of collaboration graphs

To understand how the collaboration graphs evolve over time, we built three snap-

shots for years 2006, 2008, 2010 for both Firefox and Eclipse.10 We found that from 2006–

2010, the size of the graphs doubled for Firefox and tripled for Eclipse. By further studying

the HCM model of each instance, we find three interesting aspects:

The clique (tier 1) grew significantly. In Firefox, the clique size grew by a

factor of 9, from 4 to 11 to 27 contributors. In Eclipse, the clique size grew by a factor of
10Both Firefox and Eclipse had their first official release in 2004. The number of contributors has steadily

increased since then. We chose 2006 as our starting point to ensure our samples are sizable and representative
of contributors from all components.
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roughly 3, from 9 to 16 to 28 contributors. This rate of growth is much faster than the

theoretical growth rate of a clique in a scale-free network, which grows by log logN with the

size of the network [137]. We are just reporting this as a reference point, without making

any claim that the collaboration graph is or should be modeled as a scale-free network.

The clique is stable over time. We observed that only 3 contributors in Firefox

and 1 contributor in Eclipse were discarded from the clique (tier 1) that they were once a

part of, i.e., existed in snapshot of 2006 but not anymore in the respective snapshots for

years 2008 and 2010. This indicates the stability of clique and strengthens our claim that

contributors in the clique serve all possible roles with high-confidence. If we found that

contributors in the clique are unstable, it would have reduced the confidence-levels of our

role-prediction accuracy.

Climbing up in the hierarchy is based on merit. We find that contributors

who advance to an upper tier show a significant increase in their expertise profile metrics

(e.g., number of bugs fixed, eLOC added, etc.) from the previous snapshot of the graph.

This observation validates our claim that the tier a contributor belongs to is an indicator

of her expertise level and that promotion from a lower-level tier to higher-level tier would

require demonstration of significant contribution to the project. Additionally, this demon-

strates that the promotion of a contributor in the expertise hierarchy is merit-based. In the

future, we plan to study how and when this promotion or tier change occurs, and factors

that determine the threshold of this promotion.
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Expertise Breadth vs. Depth

We analyze how expertise breadth (i.e., familiarity with multiple components in a

large project) is different from depth knowledge (i.e., familiarity with a single component

in a large project). We hypothesize that contributors who gain familiarity with multiple

components of the same project gain expertise quicker than those contributors familiar with

a single component. To validate this hypothesis, we update each contributor’s profile with

a list of components they have worked on within Firefox and Eclipse. We found that con-

tributors who form the clique have worked on at least 80.71% (for Firefox) and 69.88% (for

Eclipse) of the total sub-components. Within tier 1 we see two different distributions for

both the projects: (1) breadth-experts: contributors who have worked on at least 52.31%

(for Firefox) and 44.55% (for Eclipse) of the components, and (2) depth-experts: the re-

maining contributors who have worked on only a single component. We found that people

who are breadth-experts are senior contributors in the projects as opposed to depth-experts

who are junior members of the project which indicates that when contributors join a project,

they start gaining expertise in a single component; as their expertise grows over time, their

familiarity (and therefore breadth-expertise) broadens.

Bug Tossing and Fixing

Bug tossing paths indicate how bugs were assigned from one contributor to another

before a contributor could finally fix it. After we divide the contributors into various tiers,

we investigate how bugs get tossed from one tier to another. We make three observations.

• First assignment : our investigation indicates that in Firefox, 57.02% of the bugs are
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first assigned to a contributor from tier 2, while 24.81% of are assigned first to a

contributor from tier 1. We find very similar results for Eclipse, where 60.17% of the

bugs are first assigned to contributors in tier 2 and 18.53% bugs to tier 1.

• Final fix : 64.79% of the bugs in Firefox and 61.24% of the bugs in Eclipse are finally

fixed by (or the last assignee in the bug tossing path) contributors from tier 1. 28.04%

of bugs in Firefox and 30.93% bugs in Eclipse are fixed by contributors from tier 2.

• Tossing patterns: we wanted to see how bugs are tossed between tiers. We observe

the following seven patterns in bug tossing among tiers:

1. Same indicates that a bug assigned to a contributor in a tier was either fixed by

him (i.e., no tosses) or fixed by a contributor from the same tier,

2. Up indicates that a bug assigned at first to tier x is fixed by a contributor in

tier y when that x < y,

3. Down indicates that a bug assigned at first to tier x is fixed by a contributor in

tier y, when x > y,

4. UpDown indicates that a bug assigned at first to tier x is tossed to tier y and

then eventually fixed by a contributor in tier x when x < y,

5. DownUp indicates that a bug assigned at first to tier x is tossed to tier x − 1

and then eventually fixed by a contributor in tier x when x > y,

6. UpDownUp indicates that a bug assigned at first to tier x, tossed to tier y,

followed by tier z and then finally fixed by a contributor in tier w, where x < y,

z < y, and w < x < y.

188



www.manaraa.com

7. DownUpDown indicates that a bug assigned at first to tier x, tossed to tier y,

followed by tier z and then finally fixed by a contributor in tier w, where x > y,

z > y, w < z and w < x.

To better illustrate the tossing pattern classification, we provide an example with four

contributors, D1 (tier 1), D2 (tier 2), D3 (tier 2), and D4 (tier 3). In Table 6.4 we

show various possible tossing paths and corresponding tossing pattern we classify the

paths accordingly to. In Figure 6.8, we show the distribution of bugs in the seven

categories of tossing patterns.

The tossing pattern distribution for the two projects is shown in Figure 6.8. The

distribution indicates that in both Eclipse and Firefox, highest percentage of bugs are first

assigned to lower tiers and then eventually fixed in an upper tier. The remaining tossing

patterns have different distributions for the two projects implying that there is no generic

motif.

6.5.1 Predicting Role Profiles Using HCM

The HCM encodes significant information concisely, and an indication of this is

that it can be used to predict the role profile of a developer D. This ability to predict

role profiles from the HCM is crucial, since, as we explained in Section 6.4, the HCM can

be constructed even for projects where certain source code and bug information might be

unavailable. Figure 6.9 shows an overview of the process used for constructing and validating

our predictor model—note how constructing HCM requires only a subset of bug and source

data. We now proceed to defining our model, then evaluating its accuracy, and finally
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Tossing Path Tossing Pattern
D2 → D3 Same
D3 → D1 Up
D1 → D2 Down

D4 → D1 → D2

D4 → D1 → D2 → D3 UpDown
D1 → D4 → D2 DownUp

D3 → D1 → D2 → D1 UpDownUp
D1 → D2 → D1 → D4 DownUpDown

Table 6.4: Example of tossing pattern classification based on tossing paths. D1 (tier 1), D2

(tier 2), D3 (tier 2), and D4 (tier 3).

Same

Up

Down

UpDown

DownUp

UpDownUp

DownUpDown

(a) Firefox

Same

Up

Down

UpDown

DownUp

UpDownUp

DownUpDown

(b) Eclipse

Figure 6.8: Distribution of tossing pattern classification based on tossing paths.

showing that predictors constructed using standard expertise metrics have poor prediction

accuracy.

Defining the prediction model. We construct a role predictor based on the

HCM, i.e., a function f that, given HCM data for developer D, outputs the role profile of

D:
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Figure 6.9: Measuring prediction accuracy.

< RoleProfileD >= f(TierD, InDegreeD, OutDegreeD)

As defined in the previous section, we refine the initial graphs to be directed and

thus to each node (developer) D, in addition to their level TierD we associate in- and

out-degrees, InDegreeD and OutDegreeD. At a high level of abstraction, the lower the

TierD and the higher the InDegreeD and OutDegreeD, the more likely it is that the D

participates in a role. The function f is defined based on an 80 percentile “high” threshold

for InDegreeD OutDegreeD, as shown in the algorithms 1 and 2 .

We now evaluate the effectiveness of the HCM-based predictor model. As shown

in Figure 6.9, we use the function f to predict the role profile of D, and then compare

this predicted role profile with the role profiles we computed in Section 6.3 (i.e., the latter

serves as reference output). To measure the effectiveness of our prediction, we focus on the

precision of our role identification, i.e., how confident we are when we say that contributor
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D has served a role R. Specifically, precision is the ratio of two numbers: the number of

developers we correctly predict have served role R over the total number of contributors

that we have identified to have role R. We report prediction accuracy in columns 2 and 3

of Table 6.5. We found that the highest prediction accuracy (75.98%) was achieved when

predicting Assists in Firefox. The lowest prediction accuracy (47.22%) was attained when

predicting Patch-quality improvers in Firefox.

Clustering contributors. We also investigated whether expertise metric values

can be used to predict roles: can we form clusters based on expertise metric values that

would correspond to roles? To answer this question, we first use the contributor expertise

profiles (the tuples described in Section 6.2.2) as input to the EM clustering algorithm [41].11

After EM has determined clusters, we measured the fit between EM clusters and

HCM-based roles as the ratio between the number of pairs of contributors D1, D2 who serve

role R and are in the same cluster over the total number of pairs of contributors D1, D2 who

serve role R. Put another way, this ratio tells us how many developers D with similar role R

are within a cluster. For brevity we omit details, but we found the fit to be low (minimum

6.36%, median 15.62%, maximum 30.92%) for all roles in both Firefox and Eclipse. These

findings suggest that standard expertise metrics do not make good role indicators.

Discussion. The main point of these comparisons is that determining roles using

the initial graphs or the raw contributor activity data is not trivial. Therefore, the fact that

HCM can provide more than 50% precision is a good indication that the model captures

some interesting characteristics.
11We used the Akaike Information Criterion [4] to determine the optimal number of clusters, i.e., balance

between a good fit and a small number of clusters, to avoid over-fitting.
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Role Prediction accuracy (%)
Eclipse Firefox

Patch tester 69.62 66.28
Assist 67.73 75.98
Triager 59.06 60.37
Bug analyst 53.18 69.45
Core developer 70.96 62.89
Bug fixer 65.71 58.25
Patch-quality improver 61.80 47.22

Table 6.5: Role profile prediction accuracy using HCM.

6.6 Threats to Validity

We now present possible threats to the validity of this chapter’s work.

External validity. Our expertise profiles and role definitions assume the exis-

tence of, and access to, the source code repository and a bug tracker (bug activity, bug

report changes); this data might not be available in all projects, hence by selecting projects

which have this information—Firefox and Eclipse—our study might be vulnerable to selec-

tion bias. Additionally, we have studied open source projects only, but commercial software

might have different ways to quantify contributor expertise and roles.

Internal validity. Our bugfix-induced data relies on bug reports collected from

Bugzilla at the time the chapter was written. Future changes in bug status (e.g., if closed

bugs is re-opened) or bug severity might affect our results, but we cannot predict such

changes.

Construct validity. Construct validity relies on the assumption that our metrics

actually capture the intended characteristic, e.g., the expertise attributes we use accurately

models an individual’s expertise. We intentionally used multiple bug-fix induced and source-
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code based metrics to reduce this threat. The roles we operationalize do not use cut-off

points for frequency of contribution; therefore we do not to distinguish us between expert

and non-expert contributors within a specific role. In the future, we intend to vary the

threshold and evaluate its effect on our analysis.

Content validity. The assignee information in Bugzilla does not contain the

domain info of the email address for a contributor. Therefore, we could not differenti-

ate between users with the same email username but different domains (in our technique,

bugzilla@alice.com and bugzilla@bob.com will be in the same bucket as bugzilla@standard8.plus.com).

This might potentially lead to loss of prediction accuracy in our model. Similarly, while ex-

tracting contributor id’s from log messages, we might miss contributors who submit patches

via other committers because they do not have commit access. We do not know at this

point how many such committers exist and how this affects our findings.

6.7 Contribution Summary

In summary, our main contributions are:

• We revisited previous expertise metrics and showed that each metric captures a local

notion of expertise by quantifying a specific development activity (e.g., LOC added)

but when put together, they fail to capture a global notion of expertise.

• We introduced a set of roles: Patch tester, Assist, Triager, Bug analyst, Core devel-

oper, Bug fixer, Patch-quality improver. We also provide ways to define these roles

rigorously, assuming that we have access to the Role profile, which only some projects
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maintain.

• We designed an intuitive graph-based model of developer contribution (Hierarchical

Contributor Model (HCM)) that concisely represents the contributor interaction, in

a way that captures hierarchy, role and “importance” of contributors, which is hard

to do with previously defined expertise metrics. We then showed how one can benefit

from our model: we use it as a framework for identifying interesting properties of the

structure and the evolution of the contributor interactions, and show that it can even

help us predict the roles of contributors.

6.8 Conclusions

In this chapter we studied two large projects, Firefox and Eclipse, to operationalize

contributor role and expertise. We show that role and hierarchy information can capture a

developer’s profile and impact in ways current expertise metrics cannot. We also explored

how a contributor’s role, breadth and depth expertise evolve over time. We found that

collaboration can be an effective predictor of individuals’ roles; and that as contributors’

expertise increases, they tend to serve multiple roles in the project. Furthermore, our

analyses revealed how weighted collaboration graphs can be used to find sub-communities

in a project where contributors of similar expertise work on the same parts of the code.
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Algorithm 1 Definition of f for predicting bug-based role profile of contributor D
Input: TierD, InDegreeD, OutDegreeD

Output: RoleProfileD

Description:

if TierD = 1 then

D served ALL Roles

else if TierD=2 then

if InDegreeD ≥ 80% & OutDegreeD ≥ 80% then

D served as an Assist and Triager

if InDegreeD ≥ 80% & OutDegreeD < 80% then

D served as a Patch Tester

if InDegreeD < 80% & OutDegreeD ≥ 80% then

D served as an Assist

if InDegreeD < 80% & OutDegreeD < 80% then

D served as a Bug analyst

else if TierD ≥ 3 then

D served NO Roles
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Algorithm 2 Definition of f for predicting source-based role profile of contributor D
Input: TierD, InDegreeD, OutDegreeD

Output: RoleProfileD

Description:

if T = 1 then

D served ALL Roles

else if T=2 then

if InDegreeD ≥ 80% & OutDegreeD ≥ 80% then

D served as Core developer and Bug fixer

if InDegreeD ≥ 80% & OutDegreeD < 80% then

D served as a Patch-quality improver

if InDegreeD < 80% & OutDegreeD ≥ 80% then

D served as Bug fixer

if InDegreeD < 80% & OutDegreeD < 80% then

D served NO Roles

else if TierD ≥ 3 then

D served NO Roles
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Chapter 7

A Declarative Query Framework

In this chapter, we argue the need for effective search techniques on the integrated

system we built by combining various software elements from multiple repositories. An

automatic query system that can answer a broad range of queries regarding the project’s

evolution history would be beneficial to both software developers (for development and

maintenance) and researchers (for empirical analyses). For example, the list of source code

changes or the list of developers associated with a bug fix are frequent queries for both

developers and researchers. Integrating and gathering this information is a tedious, cum-

bersome, error-prone process when done manually, especially for large projects. Previous

approaches to this problem use frameworks that limit the user to a set of pre-defined query

templates, or use query languages with limited power. Next, we argue the need for a frame-

work built with recursively enumerable languages, that can answer temporal queries, and

supports negation and recursion. As a first step toward such a framework, we present a

Prolog-based system that we built, along with an evaluation of real-world integrated data
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from the Firefox project. Our system allows for elegant and concise, yet powerful queries,

and can be used by developers and researchers for frequent development and empirical

analysis tasks.

7.1 Introduction

Developers are overwhelmed whenever they are faced with tasks such as program

understanding or searching through the evolution data for a project. Examples of such

frequent development tasks include understanding the control flow, finding dependencies

among functions, finding modules that will be affected when a module is changed, etc.

Similarly, during software maintenance, frequent tasks include keeping track of files that

are being changed due to a bug-fix, finding which developer is suitable for fixing a bug (e.g.,

given that she has fixed similar bugs in the past or she has worked on the modules that

the bug occurs in). In Section 2.3.1 we showed examples of how the underlying framework

we built can be used for querying on integrated evolution data for large projects would be

beneficial for research in empirical software engineering, where data from these repositories

is frequently used for hypothesis testing. However using structured query languages similar

to prior work do not allow efficient search and analysis on software evolution data. They

have two main inconveniences: (1) they are not flexible enough, e.g., they permit a limited

range of queries, or have fixed search templates; (2) they are not powerful enough, e.g.,

they do not allow recursive queries, or do not support negation; however, these features are

essential for a wide range of search and analysis tasks. In this chapter, we show how we can

The work presented in this chapter have been published in the Proceedings of the Third International
Workshop on Search-driven Development: Users, Infrastructure, Tools, and Evaluation (SUITE 2011) [19].
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address these shortcomings by using a Prolog-based integration and query framework. We

chose Prolog because it is declarative yet powerful, which allows elegant, concise expression

of queries for data collection and hypothesis testing. Our framework captures a wealth of

historical software evolution data (information on bugs, developers, source code), and allows

concise yet broad-range queries on this data. The three main novelties of our framework are:

(1) it is temporally aware; all the tuples in our database have time information that allows

comparison of evolution data (e.g., how has the cyclomatic complexity of a file changed

over time?); (2) it supports powerful language features such as negation, recursion, and

quantification; (3) it supports efficient integration of data from multiple repositories in the

presence of incomplete or missing data using several heuristics.

The rest of the chapter is organized as follows: we describe the advantages of using

a Prolog-based framework, the key novelties in our design, and our data model in Section 7.2.

We demonstrate how our framework can elegantly express, and effectively answer, a broad

range of queries, without requiring pre-defined templates, in Section 7.3; these queries

form the kernel of a query library that can be used by developers and researchers in their

activities.

We tested our framework on a large, real-world project with separate source code

and bug repositories: a subset of Firefox1 evolution data. From Firefox’s source code

repository we extracted change log histories to populate our source code database. We

then extracted the bugs associated with these source files. Finally, we added function call

edges (from the static call graph) to the database, for demonstrating how our framework
1Firefox (http://www.mozilla.com/firefox) is the second most widely-used web browser [49] and has been

used in many empirical studies in software engineering [112, 16, 17].
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is beneficial in impact analysis. In Section 7.4 we present preliminary results of evaluating

our framework on Firefox data, in terms of result size and query speed.

7.2 Framework

We now turn to presenting our framework. We first motivate our decision for

choosing Prolog as the storage and querying engine for our framework, then describe the

key novel features in our approach, followed by the data model. We implemented our

framework in DES, a free, open-source Prolog-based implementation of a basic deductive

database system [143].

7.2.1 Why Use Prolog?

Prolog is declarative. In declarative languages, queries are concise and elegant

because there is no need to specify control flow or pre-define query templates.

Prolog supports negation. Negation extends the range of expressible queries but is

potentially expensive. For example, previous frameworks cannot answer queries like “return

the list of developers who have not fixed bugs in module A” or “return the list of modules

that are not affected when module A is changed”; such queries are useful, however, e.g.,

the second query can be used to reduce regression testing. Query Q1 in Table 7.2 is an

example of negation use in our framework.

Prolog supports recursion. Recursive queries are important, e.g., for computing

the transitive closure required in impact analyses. Although certain versions of SQL sup-

port recursion, it is usually a limited form of recursion, and implemented via proprietary
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Table Table Name Attributes
Source Basic sourcebasic FileNameAndPath, Release, List of Functions Defined,

Complexity, Defect Density , Date

Source Change sourcechange FileNameAndPath, Date, RevisionID, BugID, DeveloperID,

Days, Lines Added

Source Depend sourcedepend FileNameAndPath, List of Files Depends it on

(w.r . t . the static call graph), Date

Bugs bugs Bug ID, Date Reported, Developer ID, Date Changed,

Developer Role, Severity , Bug Status, Bug Resolution,

List of Dependencies, DaysReported, DaysFixed

Table 7.1: Database schema.

extensions. Q2 in Table 7.2 is a sample query that requires recursion.

7.2.2 Key Features

We now showcase some key features of our framework; existing approaches fail to

support one or more of these features.

Temporal Queries

Previous approaches that build databases from integrating multiple software repos-

itories are not capable of answering temporal queries. For example, the following queries

cannot be answered by existing systems: (1) Who modified file A on a given day?, (2) Whom

was the bug B assigned to during a certain period?, (3) What changes were made to a file

F during a specific period of time?, (4) How have source code metrics (e.g., complexity,

defect density) of a file changed over time?
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Natural Language Query DES Clause
Q1: Return the list of bugs
fixed by developer D which do
not depend on other bugs

bugs not depend(B,D,R) :− bugs(B, ,D, , , , , ,R),
not(R=’null’ ).

Q2: Given two functions F1

and F2, check if a change to
F2 will affect F1

reach(X,Y) :− sourcedepend(X,Y).
reach(X,Y) :− reach(X,Z), sourcedepend(Z,Y).

Q3: Return all activities
(fixes F or source code changes
C) associated with developer D

activity (B,D,F) :− sourcechange(F,D,B, , , , ).
activity (B,D,F) :− bugs(F, ,D,B, , , , , , , ).

Q4: Return all bugs fixed by
developer D

bugs fixed (B,D,R) :− bugs(B, ,D,’Fixed’ , , ,
, , , , ).

Q5: Return the bugs devel-
oper D could not fix

bugs not fixed (B,D) :−
bugs(B, ,D,’Assigned’ , , , , , , , ).

Q6: Return the list of bugs
developer D reported and was
eventually fixed by E

bugs fixed D E(B,D,E) :−
bugs(B, ,D,’Reported’, , , , , , , ),
bugs(B, ,E,’Fixed’ , , , , , , , ).

Q7: Return the list of files
modified by developer D on
date DT

source modified bydate (F,D,R,DT) :−
sourcechange(F,D, ,R,DT, , ).

Q9: Return files modified by
developer D for which more
than 10 lines were added

source modified bylines (F,D,B,R,L) :−
sourcechange(F,D,B,R, , ,L), L>10.

Q10: Return all source file
changes

all src changes (B,R,F,DT,D)
:− sourcechange(F,D,B,R,DT, , ).

Q8: Return the list of bugs re-
ported and fixed by the same
developer D

bugs fixed D D(B,D) :−
bugs(B, ,D,’Reported’, , , , , , , ),
bugs(B, ,D,’Fixed’ , , , , , , , ).

Q9: Return the tossing his-
tory of bug B

bugs toss(B,D,R) :− bugs(B, ,D,R, , , , , , , ).

Q10: Return the source files
that have been modified by
two developers D and E

common modified(D,E,R) :− sourcechange(R,D, , ,
, , ), sourcechange(R,E, , , , , ).

Q11: Return the list of bugs
fixed between dates D1 and D2

bugs fixed bydate (B,D,DT) :−
bugs(B, ,D,’Fixed’ , , , , , ,DT, ),
DT<D2, DT>D1.

Q12: Return the list of source
files modified by developer D

before date D1

source modified bydate (F,D,R,DT,DY) :−
sourcechange(F,D, ,R,DT,DY, ), DY<D1, DY>0.

Q13: Return the list of open
(unresolved) bugs

bugs new(B,D) :− bugs(B, ,D, , , , , , , ,−1).

Table 7.2: Sample queries from our library.
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Query Resulting Time
tuples (ms)

Q1 bugs not depend(B,wtc,R) 218 1,746

Q2 reach( ’main; nsinstall .c’ ,
’PK11 FreeSlot;pk11slot.c’ )

1 4

reach( ’PK11 FreeSlot;pk11slot.c’ ,
’main; nsinstall .c’ )

0 5

Q3 activity (B,wtc,F) 2,569 4,489

Q4 bugs fixed (B,wtc) 218 143

Q5 bugs not fixed (B,wtc) 558 287

Q6 bugs fixed D E(B, fabientassin ,wtc) 1 127

Q7 source modified bydate (F,nelson ,
R,‘2001/01/07’)

46 197

Q8 bugs fixed D D(B,nelson) 126 25

Q9 bugs toss(236613,D,R) 18 143

Q10 common modified(nelson,wtc,R) 465 25,120

Q11 bugs fixed bydate (B,D,DT),
2008/7/23<DT< 2008/10/23 .

47 1,769

Q12 source modified bydate (F,nelson ,
R,DT,DY), DT=2008/7/23.

1,275 1,282

Q13 bugs new(B,D) 810 2,435

Table 7.3: Example queries for query declarations in Table 7.2.
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Recursion

Transitive closure is helpful for impact analysis, e.g., “return the set of files that

will be affected by modifications to file F .” The problem with prior approaches is that they

either cannot compute transitive closure, or can only compute it when the graph (where

edges indicate a “depends” relationship) is known statically. For example, we might want

to find all the descendants of a file F after it has been refactored. If we do not know the

definition of “depends”, i.e., in this case, is-descendant-of, at the time we construct the

database, we first need to write a query that generates the graph, and then transitively

close it, using a language powerful enough to express transitive closure. Similarly, suppose

we have a bug B1 in file F , and we want to find the list of subsequent bugs in F that might

have been introduced in the process of fixing B1. The problem is, the list of subsequent

bugs is constructed dynamically, e.g., all the bugs in F minus the list of bugs in F that

depend on other bugs in other files. Previous approaches such as Codebook [11] use pre-

computed transitive closure for efficiently answering a pre-defined set of queries, e.g., “the

set of all functions F depends on”; however, queries like “list all functions that both F1

and F2 depends on” cannot be answered because they require language support for recur-

sion/transitive closure. Moreover, when data from new releases is added to the database,

pre-computed transitive closure does not work, because the “depends” relationships might

have changed due to the new data, hence a dynamic transitive closure algorithm would be

required.
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Integration

In open source projects, it is often difficult to integrate related information because

it is spatially dispersed and incomplete. For example, often bug reports do not have complete

information about files that were changed during a bug fix. Consider Mozilla bug 334314;

according to the Bugzilla bug report, three changes were made to file ssltap.c to fix

this bug—once by developer ID alexei.volkov.bugs and twice by developer ID nelson. The

information in the patch reference for this change is incomplete; 2 it is not clear who-

has-made-which-change. However, from the change log of file ssltap.c, we can retrieve

developers, changes, and change timestamps, which helps us complete the bug database.

7.2.3 Storage

Our framework is designed to integrate information from three sources: (1) source

code repositories—size, location, source code dependencies from the static function call

graph, etc., (2) bug repositories—who reported the bug, what is the present status of the

bug, bug dependency data, etc., and (3) interaction between developers—who tossed bugs

to whom, which two developers worked on same files, etc. Note how function calls, bugs

and developer interactions induce dependency graphs. We integrate information from these

three sources and store it into a database, so that our framework can answer cross-source

queries, as demonstrated in Section 7.3. The schema for our database is presented in

Table 7.1. We now proceed to describing the database schema, contents, and updates.

Source code. The source code data is stored in three tables: basic source code
2Patch for bug 334314:

https://bug334314.bugzilla.mozilla.org/attachment.cgi?id=218642
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information, source code changes and source code dependencies. The basic source code

information table ( sourcebasic) stores, for each module (file): its location, the list of functions

it defines, complexity metrics, defect density information, and a corresponding date. Note

that a file can have multiple entries in the database due to multiple releases, hence when

a file is not changed in a release, all values but the release timestamp remain unchanged.

These entries are important for tracking changes between releases. In the source change

table (sourcechange), we store details of all revisions that have been made to a file, either as

feature enhancements or bug fixes: the date the change was made, the revision ID, the bug

ID (if the change was due to a bug fix) and the developer who committed it, and number

of lines added. For a source change entry in the database, we also store the number of days

since the first commit3 the current activity took place.4 In the source dependency table

(sourcedepend), we store information about which other entities a given module or function

depends on directly, i.e., file, module or function dependencies induced by the call graph.

Bugs. The bug table (bugs in Table 7.1) stores information related to a bug: the

date on which the bug was reported, list of developers associated with the bug and their

roles (i.e., who reported it, who the bug was assigned to at some point, who fixed it), the

severity of the bug, the present status of the bug, final resolution of bug and list of bugs this

bug depends on. To answer queries about a time interval (e.g., how many bugs were fixed

between July 2008 and May 2010), we add two attributes —DaysReported and DaysFixed—that

represent the number of days since the first release of the project that the bug was reported

and fixed respectively. If a bug has not been resolved at the time of database creation,
3The first commit found in the log files we used was on 07/23/1998.
4This is done to answer queries involving time intervals.
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DaysFixed is set to −1.

Developer information. Thanks to our source and bug table schema design

choice, having a developer database is redundant. All the information for developers (e.g.,

tossing information, bug fix information, code authorship information) can be extracted

from the source code and bug tables.

Updating the database. As software evolves, our database needs to grow; note

that the database is monotonically increasing (we never retract facts).

7.3 Examples

We now proceed to presenting use cases for our system—a variety of frequent

queries that arise in software development and empirical research. In Table 7.2 we demon-

strate how using Prolog improves expressiveness and allows arbitrary information retrieval,

without the need for pre-computation or templates. We envision these queries forming

the kernel of a query library that can be used by developers in their daily development

and maintenance activities; similarly, the library can be useful to researchers for empirical

analysis and hypothesis testing. Note that, since our query language is based on Prolog,

we support existential queries directly (variables in Prolog clause heads are existentially

quantified), and universal queries by rewriting, i.e., ∀xQ(x)⇔ ¬∃x¬Q(x).
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7.4 Results

We randomly selected 2128 C files and 58 C++ files from the Firefox source code

repository and extracted their complete change log histories to populate our source change

database. We extracted the 932 bugs associated with these source files. We also added

to our source dependency table the 50 function call edges induced by the static call graph

between functions in these files. In total, our database contained 63,142 tuples. In Table 7.3

we present the queries we used to test the query definitions showed in Table 7.2. The first

column shows the query invocation, the second column shows the number of resulting tuples,

5 and the third column shows the query execution time, in milliseconds. We found that the

time taken to answer a query using DES increases with the increase in number of resulting

tuples, hence it can be quite high for queries with large results, e.g., Q10 ; we plan to address

scalability in future work.

7.5 Conclusion

In this chapter we show how using a Prolog-based framework we can answer a broad

range of queries on software evolution data that cross multiple software repositories. We

used several examples on Firefox source and bug repositories to show how our framework is

efficient in querying large, real-world evolution data. In the future, we would like to improve

the scalability of our framework, increase its precision, and add a visualization component.

5In query Q2 in Table 7.3, Func; Mod represents function Func defined in module Mod; the resulting
tuple 1 denotes there is a path from F1; M1 to F2; M2 while 0 denotes otherwise.
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Chapter 8

Related Work

Mining software engineering data has emerged as a successful research direction

over the past decade [65]. This chapter surveys the related works in light of mining software

repositories to benefit various decision-making processes in software development that have

been analyzed in this dissertation.

8.1 Automating Bug Assignment

8.1.1 Machine Learning and Information Retrieval Techniques

Cubranic et al. [39] were the first to propose the idea of using text classification

methods (similar to methods used in machine learning) to semi-automate the process of bug

assignment. They used keywords extracted from the title and description of the bug report,

as well as developer ID’s as attributes, and trained a Näıve Bayes classifier. When presented

with new bug reports, the classifier suggests one or more potential developers for fixing the
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bug. Their method used bug reports for Eclipse from January 1, 2002 to September 1, 2002

for training, and reported a prediction accuracy of up to 30%. While we use classification as

a part of our approach, in addition, we employ incremental learning and tossing graphs to

reach higher accuracy. Moreover, our data sets are much larger, covering the entire lifespan

of both Mozilla (from May 1998 to March 2010) and Eclipse (from October 2001 to March

2010).

Anvik et al. [8] improved the machine learning approach proposed by Cubranic

et al. by using filters when collecting training data: (1) filtering out bug reports labeled

“invalid,” “wontfix,” or “worksforme,” (2) removing developers who no longer work on the

project or do not contribute significantly, and (3) filtering developers who fixed less than 9

bugs. They used three classifiers, SVM, Näıve Bayes and C4.5. They observed that SVM

(Support Vector Machines) performs better than the other two classifiers and reported pre-

diction accuracy of up to 64%. Our ranking function (as described in Section 3.3) obviates

the need to filter bugs. Similar to Anvik et al., we found that filtering bugs which are not

“fixed” but “verified” or “resolved” leads to higher accuracy. They report that their initial

investigation in incremental learning did not have a favorable outcome, whereas incremen-

tal learning helps in our approach; in Section 3.4 we explain the discrepancy between their

findings and ours.

Anvik’s dissertation [9] presented seminal work in building recommendation sys-

tems for automating the bug assignment process using machine learning algorithms. His

work differentiated between two kinds of triage decisions: (1) repository-oriented decisions

(determining whether a bug report is meaningful, such as if the report is a duplicate or
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is not reproducible), and (2) development-oriented decisions (finding out whether the pro-

duct/component of a bug report determines the developer the report is assigned to). They

used a wide range of machine learning algorithms (supervised classification: Näıve Bayes,

SVM, C4.5, Conjunctive Rules, and Nearest Neighbor and unsupervised classification: Ex-

pectation Maximization) for evaluating the proposed model and suggested how a subset

of the bug reports chosen randomly or user-selected threshold could be used for classifier

training. Similar to Anvik, we show how using four supervised classifiers (Näıve Bayes,

Bayesian Networks, SVM, and C4.5) and a subset of training data can be used to improve

bug assignment accuracy. In addition to classification, we also use a ranking function based

on bug tossing graphs for developer recommendation and perform an ablative analysis to

determine the significance of the attributes in the ranking function; Anvik’s dissertation nei-

ther employ bug tossing graphs nor performs any ablative analysis. Anvik proposed three

types of subset training data selection: random (100 bug reports where chosen in each iter-

ation until desired prediction accuracy was achieved), strict (number of bug reports for each

developer where determined depending on his lifetime contribution) and tolerant (number

of bug reports were chosen randomly and was proportional to a developer’s contribution);

in contrast, we used a chronologically-backtracking method to find out the subset of bug

reports that can be used to efficiently predict bug triagers instead of random selection.

For evaluating their framework, they used bug reports from 5 projects: Firefox, Eclipse,

gcc, Mylyn, Bugzilla. Their prediction accuracy is as follows: 75% for Firefox (by using

6,356 bug reports for training and 152 bug reports for validation) and 70% for Eclipse (by

using 3,338 bug reports for training and 64 bug reports for validation). Our work differs
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significantly from theirs in two ways: first, we use a different data set for our training and

validation and we use all Mozilla products instead of Firefox alone, and second, we pro-

pose incremental machine learning based and probabilistic graph-based approach for bug

assignment. By using all products in Mozilla and Eclipse, we can prune developer expertise

further by our ranking function which leads to higher prediction accuracy.

Canfora et al. used probabilistic text similarity [36] and indexing developers/mod-

ules changed due to bug fixes [35] to automate bug assignment. When using information

retrieval based bug assignment, they report up to 50% Top 1 recall accuracy and when

indexing source file changes with developers they achieve 30%–50% Top 1 recall for KDE

and 10%–20% Top 1 recall for Mozilla.

Podgurski et al. [133] also used machine learning techniques to classify bug reports

but their study was not targeted at bug assignment; rather, their study focused on classifying

and prioritizing various kinds of software faults.

Lin et al. [92] conducted machine learning-based bug assignment on a proprietary

project, SoftPM. Their experiments were based on 2,576 bug reports. They report 77.64%

average prediction accuracy when considering module ID (the module a bug belongs to) as

an attribute for training the classifier; the accuracy drops to 63% when module ID is not

used. Their finding is similar to our observation that using product-component information

for classifier training improves prediction accuracy.

Lucca et al. [96] used information retrieval approaches to classify maintenance

requests via classifiers. However, the end goal of their approach is bug classification, not

bug assignment. They achieved up to 84% classification accuracy by using both split-sample
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and cross-sample validation techniques.

Matter et al. [102] model a developer’s expertise using the vocabulary found in the

developer’s source code. They recommend potential developers by extracting information

from new bug reports and looking it up in the vocabulary. Their approach was tested on

130,769 Eclipse bug reports and reported prediction accuracies of 33.6% for top 1 developers

and 71% for top 10 developers.

8.1.2 Incremental Learning

Bettenburg et al. [12] demonstrate that duplicate bug reports are useful in in-

creasing the prediction accuracy of classifiers by including them in the training set for the

classifier along with the master reports of those duplicate bugs. They use folding to con-

stantly increase the training data set during classification, and show how this incremental

approach achieves prediction accuracies of up to 56%; they do not need tossing graphs,

because reducing tossing path lengths is not one of their goals. We use the same general

approach for the classification part, though we improve it by using more attributes in the

training data set; in addition, we evaluate the accuracy of multiple text classifiers; and we

achieve higher prediction accuracies.

8.1.3 Tossing Graphs

Jeong et al. [76] introduced the idea of using bug tossing graphs to predict a set

of suitable developers for fixing a bug. They used classifiers and tossing graphs (Markov-

model based) to recommend potential developers. We use fine-grained, intra-fold updates
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and extra attributes for classification; our tossing graphs are similar to theirs, but we use

additional attributes on edges and nodes as explained in Section 3.3. The set of attributes

we use help improve prediction accuracy and further reduce tossing lengths, as described in

Sections 3.4.2 and 3.4.3. We also perform an ablative analysis to demonstrate the impor-

tance of using additional attributes in tossing graphs and tossee ranking.

8.2 Effects of Programming Language on Software Develop-

ment and Maintenance

8.2.1 Influence of Programming Languages on Software Quality

Myrtveit et al. [119] performed an empirical study to understand if usage of C++

as the primary programming language increased software development productivity when

compared to projects written in C. They used projects written either in C or C++ and no

description of the projects have been provided. They compute effort as the number of hours

a developer worked on a project and found that language choice has no effect on software de-

velopment. Phipps [130] conducted a study to compare the effects of programming language

on defect density and productivity rates. Two different small projects (one in Java and the

other in C++) developed by the author himself were considered. This study found that

when defects were measured against development time, Java and C++ showed no difference.

Although the author acknowledges his efficiency in C++ over Java, the study revealed that

using Java he was twice as productive as when using C++. Myrtveit et al. [119] performed

an empirical study to test if using C++ (as the primary programming language) increased
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developer productivity when compared to using C. They used projects written either in

C or C++ (no description of the projects were provided), computed effort as the number

of hours a developer worked on a project and found that language choice has no effect on

productivity. Phipps [130] conducted a study using two different small projects (one in Java

and the other in C++, developed by the author himself) to compare the effects of program-

ming language on defect density and developer productivity. This study found that defect

density was unaffected by the programming language and using Java the author was twice

as productive as when using C++ (even though he is more experienced in C++ than Java).

In contrast to these studies, our methodology differs in three ways: (1) we control for devel-

opment process and developer competence by considering projects written in combination

of C and C++, (2) we used real-world projects which have large developer and user bases

enabling us to draw meaningful conclusions, and, (3) we use a different set of metrics which

are widely used when evaluating software quality. Paulk [129], Jones et al. [77], and Lipow

et al. [93] studied factors that affect software quality; they infer that there is no correlation

between software quality and the programming language used in building software; we now

discuss how our study differs, and why our conclusions are different from theirs. Jones et

al. [77] used a functionality-based size measure (the eLOC required to implement a function

point) and concluded that the only factor that affects software quality is the number of

function points in a program. We choose interface complexity as one of the metrics for

internal code quality, e.g., if file A has more function calls with more parameters than file

B, A’s interface complexity is higher than B ’s. Thus, similar to Jones et al., our metric

effectively relates functions to code complexity and software quality. Lipow et al. [93] found
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that program size affects software quality, but code quality is unaffected by the choice of

the programming language. The authors studied applications written in different languages

but implementing the same functionality; they do not control for programmer expertise.

Jones et al. and Lipow et al. do not provide a measure of goodness of fit for their anal-

yses. Paulk [129] compared small applications written in different languages by graduate

and upper undergraduate students and found that, in these applications, software quality

was more dependent on programmer abilities than on the programming language. Their

conclusion strengthens our case, i.e., the need to control for programmer competence. In

contrast to all these studies, our study examines real-world, large applications, written and

maintained by seasoned developers competent in both languages.

Fateman [47] discusses the advantages of Lisp over C and how C itself contributes

to the “pervasiveness and subtlety of programming flaws.” The author categorizes flaws

into various kinds (logical, interface and maintainability) and discusses how the very design

of C, e.g., the presence of pointers and weak typing, makes C programs more prone to flaws.

Using Lisp obviates such errors, though there exists a (much smaller) class of bugs specific

to Lisp programs. The author concludes that Lisp is still preferable to C. We consider C

and C++ to study the difference between a lower-level, and (comparatively) higher-level,

language. Our goal was not to identify those C features that are more error prone and how

C++ helps avoid such errors. Rather, our analysis is at a higher level, i.e., we analyze which

language (C or C++) helps produce code that is less complex, less buggy and requires less

effort to maintain.

Holtz et al. [69] compare four languages (C, Pascal, Fortran 77, and Modula-2)
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to identify how language syntax and semantics affect software quality. They compare how

easy it is to understand a program written in different languages, and how this facilitates

development and maintenance. For example, various control constructs (e.g., recursion,

while loops, etc.) offered by different programming languages can increase or decrease

code size, understandability and code complexity. In contrast, we study applications as a

whole, rather than with respect to language constructs. Burgess et al. [34] and Wichmann

et al. [169] examine how the choice of programming language may affect software quality, by

focusing on programming language constructs, similar to Holtz et al. However, the authors

do not perform any empirical study to differentiate between languages, and do not provide

any statistical results.

Hongyu et al. [71] compared code complexity with software quality to test the

influence of the language used, but their study is limited to applications written in a single

language (C, C++, or Java) by different teams of students and conclude that software

quality depends on developer expertise only. In contrast, our study looks at complexity and

quality in mixed C/C++ applications where the same developers contribute to both C and

C++ code bases, hence developer expertise is kept constant while varying the language.

Mockus et al. [112] computed defect density (in a manner similar to ours) for

Mozilla Firefox, for the period 1998–2000, while our defect density values cover 10 additional

years, i.e., the period 1998–2010. Many researchers [48, 83, 63, 173, 116] have proposed

effort estimation models in open source software. Our study is not centered on estimating

effort or developing effort models; rather, we use effort as a metric to measure software

maintainability.
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8.2.2 Measuring software quality and maintenance effort

Mockus et al. [112] computed defect density (in a manner similar to ours) for

Apache and Mozilla Firefox. Their defect analysis for Firefox covers the period 1998–2000.

Our study covers all major and minor releases from 1998 to 2010. Kim et al. [80] and Graves

et al. [59] computed defect density similar to ours in their study of estimating fault pre-

diction and bug identification. Many researchers [48, 83, 63, 173, 116] have proposed effort

estimation models in open source software (OSS). Our study is not centered on estimating

effort or developing effort models; rather, we use effort as a metric to measure software

maintainability. Our estimation model is similar to the one used by Parastoo et al. [115],

e.g., code churn over total eLOC.

8.3 A Graph-based Characterization of Software Changes

8.3.1 Software Network Structural Properties

Louridas et al. [94] studied 19 small projects (3kLOC–13kLOC) written in one of

several language: C, C++, Perl, Ruby, or Java. They build module dependency graphs by

choosing modules of varying sizes and functionality, though no information about how these

modules were chosen is provided. They concluded that module dependency graphs exhibit

scale-free properties and follow power laws. We look at larger applications, include all

functions and modules in our graphs, study application evolution, and construct predictors.

We look at software of eLOC size ranging between 6K–3780K and instead of randomly

choosing modules, we build function call graphs and module collaboration graphs on the
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entire software. Additionally, we look at entire lifespans of the projects rather than a single

version and propose graph-based metrics which can be used as software quality predictors.

Myers [118] examined class collaboration graphs for six open source projects writ-

ten in C or C++: VTK, Digital Material, a simulation library, AbiWord, Linux kernel

2.4.19, MySQL 3.23.32, XMMS 1.2.7. Myers used various metrics (degree distribution, de-

gree correlation, and clustering) to study the nature of class collaboration graphs. Their

study revealed that these graphs are scale-free and small-world networks. We use a different

set of graph metrics, study application evolution, and construct predictors.

Valverde et al. [159] studied single releases of 29 applications written in C and

C++, constructed class collaboration graphs (but using information from the header files

only) and report four main findings: (1) there is a linear relation between number of links

and nodes in each of these graphs, (2) the projects demonstrate small-world networks be-

cause they have small graph diameters, (3) the application components are highly clustered,

and (4) software cost scales with its size. The applications we used were much larger, and

the focus of our study was not only graph topology, but also evolution and prediction.

Valverde et al. [158] studied the occurrence of motifs in software graphs. They

examined 83 systems (details on these systems are not provided) and found that certain

kind of motifs occur more frequently across all these systems. We did not study motifs,

though our cycle detection identifies circular motifs of any size.

Solé et al. [150] examined class collaboration graphs in two Java projects and re-

ported scale-free degree distributions. They used undirected graphs for their study and

reported a strong correlation between degree of the node and its dependency. They sug-
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gested a software cost model such that minimization of software development costs is an

optimal trade-off between large, expensive components with few interconnections and small,

inexpensive components with large interconnections.

Ma et al. [98] studied 6 projects written in C, C++ or Java, and found that the

stability of a motif formed in the module collaboration graph shows positive correlation

with its frequency and a motif with high Z-score tends to have stable structure. Ma et

al. [97] studied the structural complexity of a program and how it correlates with stability.

They studied single release of 11 applications written in C, C++, or a combination of both.

They found that with an increase in evaluation coefficient R (which measures cumulatively

the effects of ripple degree, connectivity and abstraction) the randomness of other factors

(ripple degree, connectivity and abstraction) increases and results in increased structural

complexity.

Potanin et al. [134] examined the structure of dynamic class collaboration graphs

by analyzing run-time analogs of static class collaboration graphs. They observed power-

law in-degree and out-degree distributions. However, they do not report any difference in

observations between the static and dynamic graphs. Wheeldon et al. [168] identified power-

law relationships in inheritance and aggregation graphs by analyzing three Java projects:

Java Developer Kit (JDK), Apache Ant and Tomcat. Valverde et al. [157] studied class

collaboration graph for the 1.2 version of Java Development Framework and reported that

class collaboration graphs similar to biological networks exhibit redundancy but does not

exhibit any form of degeneracy.

Vasa et al. [160] studied the type dependency graphs of 12 open source Java
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projects and their evolution over one year. They used three metrics: fan-in, fan-out and

branch count (cyclomatic complexity). Fan-in and fan-out are synonymous to in- and

out-degree of nodes in collaboration graphs. They found that very little existing code

changes with evolution (as software evolves, it develops a certain degree of stability) and

that Lehman’s law of increasing complexity is not applicable when measured for individual

classes.

Louiridas et al. [95] studied the collaboration graphs of twenty datasets, which

includes eight libraries, one package, one project for which only the system calls and library

functions are considered. The largest project they consider is of size 13,055 eLOC. The have

three main observations: (1)a core group of people contribute to most of the project and

that part of the project forms the majority of the code, (2) nodes which have high in-degree

are the most re-usable components in the project, and (3) the collaboration graphs exhibit

scale-free nature.

Wang et al. [163] studied the evolution of the Linux kernel using complex net-

works analysis; their study is based on 223 Linux kernel versions. They used node degree

distribution and average path length of the call graphs as metrics and found that the call

graphs of the file system and drivers module are scale-free small-world complex networks and

that both of the file system and drivers module exhibit very strong preferential attachment

tendency.

Our study is different from all the above works in three significant ways: (1) we

analyze a broad range of large projects written in C, C++, or a combination of both,

and additionally study multiple releases of the same project which allows us to analyze
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the evolution in the topologies of these graphs, (2) we propose graph-based metrics which

can be used as software quality predictors, and (3) we also look at developer-collaboration

graphs in two large, widely-used open source projects which reveals how social networking

among developers affect software quality.

8.3.2 Software Networks for Failure Prediction

Zimmermann et al. [175] construct source code dependency graphs in Windows

Server 2003. They used the complexity of these dependency graphs (measured as cy-

clomatic complexity, degree-based complexity, distance-based complexity and multiplicity-

based complexity) to predict the failure-proneness of a given source code artifact.

Schroter et al. [144] performed an empirical study of 52 Eclipse plug-ins and re-

ported that failure history of software artifacts can be used to build models which accurately

predict failure-prone components in newer versions of the same program. Their model is

based on the USES relationships between software components and is capable of answering

two questions about a software project: (1) whether a component will be failure-prone or

not, based on its design data and (2) which are the most failure-prone components.

Nagappan et al. [122] showed that dependency graphs built from software compo-

nent dependencies can be used as efficient indicators of post-release failures. They evaluated

their approach on Windows Server 2003; their model could appropriately identify 60% of

important components that developers considered critical, too.

Our study is different from all the above works in two significant ways: (1) we

analyze multiple releases of the same project which allows us to analyze the evolution
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in the topologies of these graphs, (2) we propose NodeRank, a metric which is powerful

in identifying critical spots in the software. Additionally, our ModularityRatio metric is

capable of predicting maintenance effort.

8.3.3 Bug Severity Prediction

Menzies et al. [109] proposed a text classification-based framework SEVERIS

(SEVERity ISsue assessment) to assist test engineers in assigning severity levels to de-

fect reports. They tested their approach on bug reports in NASA’s Project and Issue

Tracking System (PITS) and reported up to 90% prediction accuracy. Lamkanfi et al. [88]

also proposed a text classification based machine learning model to predict the severity of a

bug. They tested their model on Mozilla, Eclipse and GNOME bug reports, and achieved

65–85% accuracy. In contrast, our NodeRank works at both function and module level and

can predict bug severity before a bug report is filed.

8.3.4 Developer Collaboration

Bird et al. [21] studied coordination among developers by analyzing the Apache

HTTP Server Developer mailing list for a period of 7 years. They found that developer

graphs are small-world networks, and that there is a strong relationship between the level

of email activity and the level of source code activity for a developer. Pinzger et al. [131]

built a contribution network that represented developer contributions with a heterogeneous

developer-module network in Microsoft Windows Vista. They found that in this network,

central software modules are more likely to be failure-prone than modules located in sur-
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rounding areas of the network. Their analysis also shows that the number of developers

and number of commits are significant predictors for the probability of post-release failures.

Abreu et al. [3] studied developer communication frequency for the Eclipse JDT project

and found that the frequency of developer communication is positively correlated with the

number of bugs in the project. They also found that developer activity increases pre-release

of a version.

Our work differs in two ways from these prior efforts: (1) we look at multiple

versions of developer collaboration by constructing these graphs for each year and analyzing

how they change over time, and (2) we show that there exists a high positive correlation

between edit distance between these successive developer graphs and the defect count.

8.4 Quantifying Contributor Expertise and Roles

8.4.1 Contributor Roles

Yu et al. [174] define two types of project membership: core members, i.e., develop-

ers who have interacted with each other (committed to the same file) at least 10 times and

associate members (developers who have interacted with core members 5-10 times and 1-5

times amongst themselves). They evaluated their approach on ORAC-DR (14 members)

and Mediawiki (56 developers) and reported the distribution of core and associate members

in these projects. Alonso et al. [7] use visualization to quantify developer expertise (based

on number of files the developer is associated with) and differentiate between developers

and contributors. They used a supervised classifier to learn how contributors are associated
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with various files and then differentiate between contributors and developers in the Apache

project (75 developers, 8 years’ worth of CVS logs). They also extract different components

a developer has contributed to in the source code, and form a word cloud-based visualization

to predict a developer’s expertise. If a developer has many keywords but not a single one

with high frequency, they term him as a “generalist” while if a contributor for example has

“security” as the highest frequency word in their word cloud, they quantify him as “security

expert.” Our work defines and predicts seven finer-grained roles stable across projects, uses

a wide range of expertise metrics, introduce a hierarchy model and is based on larger data

sets.

8.4.2 Developer Expertise

Mockus et al. [113] studied developer expertise evolution by using source code

data from a commercial product at Bell Labs. Based on interviews with 19 professional

Java programmers, Fritz et al. [51] report that, according to the programmers, expertise is

concentrated on source code which they author, the code parts they use and the frequency of

that use. Fritz et al. [52] argued that in addition to authorship, developer’s interaction with

the code also sheds light on their expertise. They compute a degree-of-knowledge (DOK)

model that captures in addition to how many files a developer has authored, how many

files she has changed in his lifetime and find that a developer changes a file authored by her

more frequently compared to files authored by others, Schuler et al. [145] introduced the

concept of “usage expertise,” defined as the knowledge of methods that a developer’s code

calls. They argued that the more a developer reuses existing code, the more knowledge she
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has about existing code. They used the Eclipse CVS logs to mine the information about

how contributors reuse code and conclude about their expertise. They found that when

developers reuse similar parts of the code, they are more likely to create small neighborhoods

in the contributor collaboration graphs. Minto et al. [111] built a tool—Emergent Expertise

Locator (EEL) that can recommend expert developers in emerging teams. They use a

recommendation algorithm that returns a ranked list of developers for a given file. They

used their tool to study three open source projects: Firefox, Bugzilla and Eclipse. Gousios

et al. [58] presented an approach for evaluating developer contributions based on data from

bug repositories. They define a developer contribution metric which measures how many

LOC a contributor worked on, and how many events or activities he/she has been associated

with it. Using this metric for each developer, their model ranks the importance of events

associated with a project. They tested their approach on the Alitheia project and showed

how the model could classify important events in the project. Dominique et al. [103] built

a developer expertise model based on their vocabulary or set of words that appear in bug

reports they fix and classify bug reports based on that for triaging purposes and tested

their approach on Eclipse. Bird et al. [22] studied the effects of code ownership in Windows

software, and found that code ownership is an effective indicator of developer’s knowledge.

Similar to us, they found that minor contributors often contribute buggy code (in contrast

to major developers or module owners). However, they do not quantify contributor role or

expertise using a wide-range of expertise attributes or use contributor hierarchy as a proxy

for developer expertise. Rahman et al. [136] studied effects of ownership and experience on

software quality. They categorized developers into generalized experts and specialists based
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on the components they have committed to in a project while fixing a bug. They found

that specialized experience leads to less defective code compared to general expertise. In

our work, expertise is in a fine-grained, multi-attribute way; we show that it is possible to

infer both expertise and the role a contributor serves in the community using our proposed

attributes and the hierarchy model we built. Weissgerber et al. [164] proposed visualization

techniques to understand how developers work together as a team. However, their goal was

not to predict developer expertise, role, or software quality based on collaboration.

Our work is significantly different from all these efforts in four ways: (1) we couple

the source-code and bug-based expertise of contributors while all prior studies used only

one when quantifying contributor expertise, (2) we define and differentiate a contributor’s

role from her expertise, (3) we demonstrate that the collaboration-based contributor hier-

archy is an effective way to estimate a contributor’s role from her expertise profile, and (4)

we differentiate between breadth and depth expertise of contributors. To the best of our

knowledge, our work is the first to quantify the various roles contributors serve in software

development apart from fixing bugs and adding new code.

8.4.3 Collaboration Graphs and Hierarchy Detection

A rich body of literature [21, 20, 139, 138, 107, 70] explores contributor collabo-

ration in the context of social networks. However, there has been no research in the area of

extracting expertise hierarchy using contributor collaboration networks to quantify contrib-

utor expertise or role in open source projects. Hierarchy detection has been widely studied

in sociology [152], network sciences [81, 37, 148, 5], and online social networks [60, 100, 91].
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Our hierarchy detection methodology is very similar to Siganos et al. [148] which they used

to analyze the Internet topology. Focusing on Debian, O’Mahony studied the relationship

between participation and leadership positions in non-technical tasks like mailing list man-

agement [126]. In contrast, in our study we do not consider leadership as a role or expertise

measure.

8.5 Searching Software Repositories

Herraiz et al. [67] identified the need for organized software repositories that can

improve data retrieval techniques in software engineering and ensure repeatability, trace-

ability and third-party independent verification and validation. They proposed a research

agenda by identifying the research challenges in this area.

Hindle and German [68] proposed SCQL, a first-order and temporal logic-based

query language for source code repositories. Their data model is a directed graph that

captures relationships between source code revisions, files and modification requests. SCQL

supports universal and existential queries, as we do, but does not support negation and

recursion, which we do. While we do not propose a new language, the significant difference

is that we consider multiple software repositories to integrate data and answer queries.

Instead of source code changes only, our framework captures relationships between three

artifacts: developers, bugs and source code. Our proposed model can also answer queries

involving temporal information, e.g., how files depend on each other, how a bug was tossed

among developers, which other bugs a bug is dependent on.

Fischer et al. [50] proposed an approach for populating a release history database
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that combines source code information with bug tracking data and is therefore capable

of pinpointing missing data not covered by version control systems such as merge points.

Similar to Fischer et al., we build our database initially by extracting information from

source code and bug repositories.

German [54] proposed recovering software evolution history using software trails—

information left behind by the contributors such as mailing lists, version control logs, soft-

ware releases, documentation, and the source code. The method was used to recover soft-

ware evolution traits for the Ximian project. Our data collection and database population

is similar, though our framework is meant to answer queries aggregating data from multiple

repositories.

Begel et al. [11] developed Codebook, a framework capable of combining multiple

software repositories within one platform. to support multiple applications Our work is

similar but the main challenge in building a framework for open source projects lies in

collecting and accurately integrating related data in absence of organized repositories and

missing data [50]. Their query language is restricted to regular expressions, but has support

for a fixed set of pre-computed transitive closure results; we use Prolog, a Turing-complete

language, hence our framework can express unrestricted queries (including temporal ones).

Nussbaum et al. [124] presented the Ultimate Debian Database that integrates

information about the Debian project from various sources to answer user queries related

to bugs and source code using a SQL-based framework. However, their framework does not

have support for queries that require negation or transitive closure.

Starke et al. [153] conducted an empirical study on programmers’ search activities
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to identify the shortcomings of existing search tools. They found that SQL-based state-

of-the-art source code search tools are not effective enough for expressing the information

developer is seeking. We believe that declarative query support will improve developers’

code-search experience.

Hajiyev et al. [61] proposed CodeQuest, a Datalog-based code search tool for Java

programs. They used four open source Java applications: Jakarta Regexp, JFreeChart,

Polyglot and Eclipse to demonstrate their tool. Our work significantly differs from this

work in two ways: (1) we do not build any language specific tool, thus forming a broader

framework, and (2) we integrate multiple repositories, which allows the user to search

information about bugs and developers in addition to source code.

Beyer [13] proposed CrocoPat, an application-independent tool to answer graph

queries that require transitive closure computation and detect significant code patterns.

Fischer et al. [50] proposed an approach for populating a release history database

that combines source code information with bug tracking data and is therefore capable

of pinpointing missing data not covered by version control systems such as merge points.

Similar to Fischer et al., we build our database initially by extracting information from

source code and bug repositories. Additionally, we retrieve developer information from

these data sets. Our model is capable of answering a broader range of queries that are

temporally aware, involves recursive computation and will also be designed to recommend

missing data (like merging points) similar to this work.

German [54] proposed recovering software evolution history using its software

trails: information left behind by the contributors to the development process of the prod-
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uct, such as mailing lists, web sites, version control logs, software releases, documentation,

and the source code. The method was used to recover software evolution traits for the

Ximian project. Our data collection and database population is similar to German; how-

ever our framework is a search-based tool that can answer broader range of queries about

data that cross multiple repositories.

Begel et al. [11] recently proposed a novel framework called Codebook, which is

capable of combining multiple software repositories within one platform to support multiple

applications. We propose to build a similar framework but the main challenge in building

this framework for open source projects lies in collecting and accurately integrating related

data in absence of organized repositories and missing data [50]. DES uses Prolog, which is a

recursively enumerable query language, and hence our framework can answer arbitrary tem-

porally aware queries by supporting transitive closure and negation without being limited

to queries restricted to regular or context-free grammar.

Nussbaum et al. [124] presented the Ultimate Debian Database that integrates

information about the Debian project from various sources to answer user queries related

to bugs and source code and uses SQL as the query language. Our framework can be

customized for software that has access to source code control repository and bug report

archives.

Starke et al. [153] conducted an empirical study about programmers’ search activ-

ities to identify the shortcomings of existing search tools. They found that the state-of-the

art source code search tools based on the SQL-framework are not effective enough in ex-

pressing the information the developer is seeking. We believe that with the advantages of
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explicit expressiveness in DES will improve the code-search experience of developers.

233



www.manaraa.com

Chapter 9

Conclusions

Over the past decade, mining software repositories has emerged as a successful

paradigm for analyzing software development histories to guide several aspects of software

development and maintenance. In addition to the software, the development process pro-

duces a wealth of data: source code change logs, bug reports, email messages, discussion

forums, messages etc. By using data-mining and machine learning techniques that Amazon

uses to recommend books or biologists use to study protein or DNA structures, or chemists

use to design drugs, software engineering researchers inspect these artifacts for patterns that

can reduce the effort and costs associated with building and maintaining large software. For

instance, answering questions like does the number of changes made to a program correlate

with the number of bugs found in it?, or does having more people work on a module im-

prove its quality (due to increased chances of testing) or worse (because of communication

issues)? can help software practitioners take important decisions. The overarching goal

of this dissertation was to answer these kinds of decision-making problems by designing
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effective recommendation systems by aggregating data over multiple sources (source, bug,

contributors) and capturing their amorphous behavior. To this end, this dissertation makes

fundamental contributions in two areas: (1) building a generic mixed-graph by aggregating

information from multiple sources and then creating hyper-edges to model amorphous be-

havior among various software elements, and (2) showing the effectiveness of this framework

by to answer decision-making problems that have either not been answered in the litera-

ture earlier (for example, how can choosing a programming language affect software quality

(Chapter 4) or how various contributors play different roles in software development (Chap-

ter 6)) or by improving state-of-the-art recommendation systems (for example, finding the

right developer to fix a bug (Chapter 3) or finding defect prone parts of a software (Chapter

5) or how searching software repositories can be made more user-friendly (Chapter 7)).

9.1 Lessons Learned

Our framework and analysis presented in this dissertation are heavily dependent

on availability of software development historical data like source code logs, patches, and

high-quality bug reports. We chose several long-lived, large, real-world, widely-used open-

source projects so that we can use the wealth of data archived in these projects to build

our models. However, this plethora of information is either unavailable or unstructured in

software projects. For example, to find the list of contributors involved with the bug-fix

process — validating a newly bug report, assigning bugs to a developer, reviewing patches,

validating and closing a bug report — we need to mine several data sources: source code

logs, bug reports, bug activities. In fact, if we would have considered feature enhancement
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requests, we had to mine mailing lists and social forums to understand the dynamics of

how feature enhancement requests are voted for, assigned to a future release, assigned to

a developer, tested on a small number of users before it makes in to the public release.

However, mining this unstructured data and discovering its semantics, is a hard problem.

All existing text mining techniques are heavily dependent on the nature of data sets, which

makes building a generic framework challenging. On the other hand, large, widely-used

projects like Chrome 1, Android 2, k9mail 3, and several other Android apps based on

Google code tracker 4 store limited information. Since, rich body of work in the broader

area of mining software repositories, including ours, have shown that software development

and maintenance can benefit from analyzing these data, a big challenge for researchers

would be to simplify the software development data archival process. In the next section,

we propose several potential future directions that can push the boundaries of the research

we presented in this dissertation.

9.2 Future Work

As shown in this dissertation, mining software repositories can help develop quan-

titative approaches that can improve software maintenance and development process. In

this section, we discuss five primary future directions of our work.

• Improving software repositories by enabling automatic information inte-

gration. One of the main reasons why mining data from software repositories is
1Chrome bug tracker: http://code.google.com/p/chromium/issues/
2Android bug tracker: http://code.google.com/p/android/issues/
3k9mail bug tracker: http://code.google.com/p/k9mail/issues/
4Google Code bug tracker: http://code.google.com/
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difficult is because the data is incomplete and multiple repositories store the same

data in various formats. Consider the case when contributor C1 uploads a patch P1

for bug B. Later, the patch is tested by contributor C2, some minor fixes are done

by C3 and later C4 commits the new version of patch P1 to the repository. The

source code log message do not have any information about the history of P1 and

contributors C1, C2 or C3. Another commonly encountered scenario is incomplete

information in bug repositories; bugs marked as fixed and closed, do not contain any

patch information. For example, consider the VLC bug 3077. 5 We find that the

bug has been marked fixed by contributor courmisch, but there is no information

about the patch. However, when we mine the source-code repository, we find a com-

mit by Remi Denis-Courmont with the log message: “Qt4 sout: convert option to

UTF-8 once, not twice (fixes: #3077)”. 6 To remove these inconsistent information,

developing an intelligent autonomous system that can capture changes in one repos-

itory and automatically update the other repository would be beneficial to both the

software project development–maintenance team along with empirical software engi-

neering research community where researchers spend considerable amount of resources

to accumulate correct (or less noisy) data for research. For example, as soon as a bug

report is submitted by a user, the software recommends top-k developers who can

potentially validate or reproduce the bug (or, a bug analyst). Next, when the bug is

confirmed, set of developers who can potentially fix the bug are nominated. When

the bug is assigned to one of these recommended developers, the bug status auto-
5VLC Bug 3077 link: https://trac.videolan.org/vlc/ticket/3077
6Commit link for VLC bug 3077: http://git.videolan.org/?p=vlc.git;a=commit;h=

67bb9babf9eb1479f32c58dc84089d41ef360f1b
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matically changes to “Assigned.” When a patch is submitted, the recommendation

engine further nominates a group of patch-reviewers and testers and once the patch

is accepted, the bug status is changed to “resolved” automatically and the patch is

now in the build.

• Automatic generation of hyper-edges. One big challenge that stems from the

generic framework we propose is automatic generation of hyper-edges for any arbi-

trary decision making problem. This would require an intelligent agent that can

understand the semantics of both the decision making problem and the data, and

generate recommendations on the fly. For example, in this dissertation we showed

how we can build a hierarchy of contributors in a project to predict his role. However,

these roles were defined by us based on common activities that contributors perform

in software development. Hence, our model is unable to answer questions like what

other minor roles do contributors perform? For example, are there contributors who

seed new ideas in the project not by merely filing feature enhancement requests but

by modifying an existing one that serves a broader goal? Automatic generation of

hyperedges in these cases would also simplify automatic hypothesis testing.

• Improving search in software repositories. As explained in Chapter 7, we build

a Prolog-based search model to improve query experience in software repositories. We

are currently using DES, an open-source Prolog-based implementation of deductive

databases [143] as our framework’s engine. In the future, we plan to use the bdddbddb

framework to speed up queries [167], as bdddbddb has been shown to be able to handle

Datalog-based static analyses for large, real-world programs. We plan to use other
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software traits/trails, e.g., mailing list information, to improve our data set for more

accurate information modeling and retrieval. In our preliminary experiments as shown

in Section 7.4, we did not use the sourcebasic database or any queries related to it. In

future, there are four directions of improving the current framework: (1) extending

our library to answer queries related to the sourcebasic like: “which file exhibited the

maximum increase in complexity or defect density during a given time interval,” (2)

tracking bug-introducing changes using our framework—changes in the source code

that led to bugs, (3) including code-ownership information to indicate which developer

owns which artifact of a software system in our database using heuristics similar to

Girba et al. [56], and (4) adding a visualization layer [57] on top of our current

framework that will allow query results to be displayed visually, rather than as text.

• Information diffusion in software projects. A rich body of literature [21, 20,

139, 138, 107, 70] explores contributor collaboration in the context of social networks

formed in software development. Focusing on Debian, O’Mahony studied the relation-

ship between participation and leadership positions in non-technical tasks like mailing

list management [126]. However, none of the existing works in software engineering

have focussed on problems like information diffusion in these collaboration models.

Domingos et al. [44] were the first to study information diffusion to analyze how the

word-of-mouth effects help spread the information to a wider set of individuals and

presented combinatorial optimization algorithms of choosing the initial set of cus-

tomers to maximize profit. Kempe et al. [78] presented an approximation algorithm

of choosing the top-k influential people in a social network. The contributor collab-
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oration models we built using source-code and bug interaction data gives a partial

view of technical expertise and roles in software development. However, understand-

ing and measuring influences in a software project is important. For example, there

are contributors who provide the vision of how the software should evolve, e.g., con-

tributors who choose the right problems (or chooses-prioritizes new features) for an

upcoming release. In our study, we do not consider mailing list or social forum data

of software projects to mine this data. Similarly, when we assign tossing probabili-

ties to find the best developer for a new bug report, we only consider the developer

who could finally fix the bug. However, it is common that developers contribute par-

tially to the final patch in various ways. When a bug is assigned to a developer, he

might provide insights and add notes to the bug report instead of actually fixing the

bug; in fact, there are contributors who provide useful discussions about a bug in the

comment sections of a bug report who are never associated with the fixing process

directly. These contributions are not considered in our ranking process, though they

would significantly help in understanding contributor expertise and role in the soft-

ware development community. Quantifying how these useful insights (or contribution)

can be attributed towards the bug-fix based expertise of a contributor or at a higher

level, how information or knowledge is diffused in a successful software project has

the potential of further improving the evolution process. For example. automatically

classifying contributors who strongly influence a software project in addition to di-

rectly fixing bugs and adding new features, would be beneficial to resource allocation.

Additionally, it would be interesting to study how these influential contributors in a
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project affect the entire set of contributors and if any hierarchy model similar to our

HCM model (presented in Chapter 6) emerges from this analysis.

• Weighted analysis of contributor collaboration. In chapter 2 of this dissertation,

we show how contributors form a network that emerge from their source code and bug

fix based collaboration. In the studies we use this collaboration information, we do not

use the strength of collaboration as a metric to improve our graph-based predictions.

For example, if two contributors A and B collaborate twice, while contributors B and

C collaborate a hundred times, our models are unable to differentiate between these

difference in frequencies of collaboration. Additionally, we do not prioritize collabo-

ration with an expert contributor more than collaboration with a newbie contributor

in the project. We envision that using both the expertise information and frequency

of collaboration would significantly help improve the current prediction models and

give a new dimension to the very definition of collaboration.
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[159] Sergi Valverde and Ricard V. Solé. Hierarchical small worlds in software architecture.
Dynamics of Continuous Discrete and Impulsive Systems: Series B; Applications and
Algorithms, 2007.

[160] Rajesh Vasa, Jean-Guy Schneider, and Oscar Nierstrasz. The inevitable stability of
software change. In International Conference on Software Maintenance, pages 4–13,
2007.
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